Videos | RSNA 2015 | December 14, 2015

Video discussion of new technology and trend highlights at the Radiological Society of North America (RSNA) 2015 meeting with ITN editor Dave Fornell and ITN contributing editor Greg Freiherr.

Views

Recent Videos View all 624 items

Computed Tomography (CT) | January 28, 2022

Charlie Hamm, M.D., a radiology resident at the Charité University Hospital of Berlin, Germany, presented a late-breaking study at the Radiological Society of North America (RSNA) 2021 annual meeting on the use of computed tomography (CT) scans to investigate dinosaur bones non-destructively. In the process of examining a tyrannosaurus rex jaw bone that is more than 66 million years old, a bone tumor was found and clearly shown on the CT scans.

This feasibility study to determine if CT can be used to aid paleontology was done in collaboration with the Museum für Naturkunde Berlin. Dual-energy computed tomography (DECT) was used to provide information about tissue composition and disease processes not possible with single-energy CT.

Read more in the article CT Uncovers Bone Disease in Tyrannosaurus Rex Jaw

Find more RSNA news and video

 

 

Quality Assurance (QA) | January 28, 2022

Mahadevappa Mahesh, Ph.D., chief physicist, Johns Hopkins Hospital, and professor of radiology and radiological science, explains the basics involved in quality assurance (QA) of radiology imaging systems. He spoke to ITN at the Radiological Society of North America (RSNA) 2021 annual meeting.

He explains the role of the medical physicist in keeping X-ray imaging systems such as CT, angiography and mammography calibrated and checking the device output of radiation. This is performed by imaging phantoms that mimic a simplified representation of the human body. 

Artificial intelligence (AI) use is growing in imaging and medical physics and QA of these systems might also become a duty of the medical physicist in some AI imaging applications.  

Find more content on QA systems

Find more RSNA news and video

Enterprise Imaging | January 27, 2022

Rik Primo, principle at Primo Medical Imaging Informatics Consultants and former health IT developer with Siemens, Philips and Agfa, explains the difference cloud-native versus cloud-enabled PACS and radiology enterprise imaging systems. He spoke with ITN during RSNA 2021.the Radiological Society of North America (RSNA) 2021 annual meeting.

Find more RSNA news and video

Related content on enterprise imaging

 

Artificial Intelligence | January 27, 2022

Emanuel Kanal, M.D., FACR, FISMRM, AANG, director of the department of emergency radiology and teleradiology, director of MRI services, and professor of radiology and neuroradiology at the University of Pittsburgh, explains artificial intelligence (AI) is the biggest over all trend in radiology at  the Radiological Society of North America (RSNA) 2021 annual meeting.

VIDEO: Artificial Intelligence Trends in Medical Imaging — Interview with Sanjay Parekh, Ph.D.

VIDEO: Examples of Artificial Intelligence Pulmonary Embolism Response Team Apps

Technology Report: Artificial Intelligence in Radiology 2021

Find more AI news

Find more RSNA news and video

Sponsored Videos View all 164 items

Magnetic Resonance Imaging (MRI) | January 24, 2022

With the recent launch of the Magnifico Open, Italian company Esaote has entered the open MRI whole body space. ITN had a conversation with Franco Fontana, CEO of Esaote, at RSNA21.

Magnifico Open, which adds to the range of Esaote products unveiled in 2021, is an open magnetic resonance system with the latest technology. The wide choice of receiver coils and state-of-the-art MRI technology offer the user excellent image quality, while the permanent magnet makes it easy to use and lowers operating costs. The open magnet and the easy-to-access patient table also facilitate, speed up and make patient positioning more comfortable, ideal for both the claustrophobic and for children.

View more RSNA21 content here

Enterprise Imaging | August 06, 2021

Integrated Speech recognition solutions are becoming a necessary part of radiology reporting platforms. Konica Minolta recently announced a partnership with nVoq to integrate a speech to text solution into their Exa Platform

ITN recently spoke with Kevin Borden, Vice President of Product, Healthcare IT for Konica Minolta and Chad Hiner, Vice President of Customer Experience for nVoq, to talk about how this integration is improving the Exa user experience.

Related enterprise imaging content:

Talking Trends with Konica Minolta

BLOG: Zero-footprint Viewer with Server-side Rendering Pushes Imaging Forward During Pandemic

BLOG: Exa Gateway Offers a New Way to Deliver Teleradiology 

BLOG: Artificial Intelligence for Clinical Decision Support and Increased Revenues

BLOG: The Power of the Next Generation of RIS

 

Information Technology | December 01, 2020

Treating cancer effectively often includes a combination of patient therapies. In recent years, technology advancements have led to a more efficient and personalized approach to treatment. Andrew Wilson, President of Oncology Informatics at Elekta, discussed the latest software advancements with ITN.

X-Ray | November 28, 2020

Agfa is looking to transform X-ray with new advancements in volumetric imaging, and with new mobile concepts and implementation of intelligent tools. ITN had a conversation with Georges Espada on Transforming X-ray with Intelligent Tools. 

Technology Reports View all 12 items

Artificial Intelligence | July 22, 2021

This is an overview of trends and technologies in radiology artificial intelligence (AI) applications in 2021. Views were shared by 11 radiologists using AI and industry leaders, which include:

Randy Hicks, M.D., MBA, radiologist and CEO of Reginal Medical Imaging (RMI), and an iCAD Profound AI user.

• Prof. Dr. Thomas Frauenfelder, University of Zurich, Institute for Diagnostic and Interventional Radiology, and Riverain AI user. 

• Amy Patel, M.D., medical director of Liberty Hospital Women’s Imaging, assistant professor of radiology at UMKC, and user of Kios AI for breast ultrasound. 

Sham Sokka, Ph.D., vice president and head of innovation, precision diagnosis, Philips Healthcare.

Ivo Dreisser, Siemens Healthineers, global marketing manager for the AI Rad Companion.

Bill Lacey, vice president of medical informatics, Fujifilm Medical Systems USA.

• Karley Yoder, vice president and general manager, artificial intelligence, GE Healthcare.

Georges Espada, head of Agfa Healthcare digital and computed radiography business unit.

Pooja Rao, head of research and development and co-founder of Qure.ai.

Jill Hamman, world-wide marketing manager at Carestream Health.

Sebastian Nickel, Siemens Healthineers, global product manager for the AI Pathway Companion. 

There has been a change in attitudes about AI on the expo floor at the Radiological Society of North America (RSNA) over the last two years. AI conversations were originally 101 level and discussed how AI technology could be trained to sort photos of dogs and cats. However, in 2020, with numerous FDA approvals for various AI applications, the conversations at RSNA, and industry wide, have shifted to that of accepting the validity of AI. Radiologists now want to discuss how a specific AI algorithm is going to help them save time, make more accurate diagnoses and make them more efficient.

With a higher level of maturity in AI and the technology seeing wider adoption, radiologists using it say AI gives them additional confidence in their diagnoses, and can even help readers who may not be deep experts in the exam type they are being asked to read. 

With a myriad of new AI apps gaining regulatory approval from scores of imaging vendors, the biggest challenge for getting this technology into hospitals is an easy to integrate format. This has led to several vendors creating AI app stores. These allow AI apps to integrate easily into radiology workflows because the apps are already integrated as third-party software into a larger radiology vendors' IT platform.  

There are now hundreds of AI applications that do a wide variety of analysis, from data analytics, image reconstruction, disease and anatomy identification, automating measurements and advanced visualization. The AI applications can be divided into 2 basic types — AI to improve workflow, and AI for clinical decision support, such as diagnostic aids.

On the workflow side, several vendors are leveraging AI to pull together all of a patients' information, prior exams and reports in one location and to digest the information so it is easier for the radiologist to consume. Often the AI pulls only data and priors that relate to a specific question being asked, based on the imaging protocol used for the exam. One example of this is the Siemens Healthineers AI Clinical Pathway and Siemens AI integrations with PACS to automate measurements and advanced visualization.

AI is also helping simplify complex tasks and help reduce the reading time on involved exams. One example of this is in 3-D breast tomosythesis with hundreds of images, which is rapidly replacing 2-D mammography, which only produces 4 images. Another example is automated image reconstruction algorithms to significantly reduce manual work. AI also is now being integrated directly into several vendors' imaging systems to speed workflow and improve image quality.

Vendors say AI is here to stay. They explain the future of AI will be automation to help improve image quality, simplify manual processes, improved diagnostic quality, new ways to analyze data, and workflow aids that operate in the background as part of a growing number of software solutions. 

Several vendors at RSNA 2020 noted that AI's biggest impact in the coming years will be its ability to augment and speed the workflow for the small number of radiologists compared to the quickly growing elder patient populations worldwide. There also are applications in rural and developing countries were there are very low numbers of physicians or specialists.

 

Related AI in Medical Imaging Content:

AI Outperforms Humans in Creating Cancer Treatments, But Do Doctors Trust It?

VIDEO: Artificial Intelligence For MRI Helps Overcome Backlog of Exams Due to COVID

How AI is Helping the Fight Against Breast Cancer

VIDEO: Use of Artificial Intelligence in Nuclear Imaging

3 High-impact AI Market Trends in Radiology at RSNA 2019

 

Photo Gallery of New Imaging Technologies at RSNA 2019

VIDEO: Editors Choice of the Most Innovative New Radiology Technology at RSNA 2019

Study Reveals New Comprehensive AI Chest X-ray Solution Improves Radiologist Accuracy

VIDEO: Real-world Use of AI to Detect Hemorrhagic Stroke

The Radiology AI Evolution at RSNA 2019

 

Eliminating Bias from Healthcare AI Critical to Improve Health Equity

VIDEO: FDA Cleared Artificial Intelligence for Immediate Results of Head CT Scans

Building the Future of AI Through Data

WEBINAR: Do More, Perform Better: Delivering Clinical Quality through Advanced Radiology and Artificial Intelligence

Integrating Artificial Intelligence in Treatment Planning

 

Selecting an AI Marketplace for Radiology: Key Considerations for Healthcare Providers

Artificial Intelligence Improves Accuracy of Breast Ultrasound Diagnoses

Artificial Intelligence Greatly Speeds Radiation Therapy Treatment Planning

WEBINAR: Building the Bridge - How Imaging AI is Delivering Clinical Value Across the Care Continuum

AI in Medical Imaging Market to Reach $1.5B by 2024

 

VIDEO: AI-Assisted Automatic Ejection Fraction for Point-of-Care Ultrasound

5 Trends in Enterprise Imaging and PACS Systems

VIDEO: Artificial Intelligence to Automate CT Calcium Scoring and Radiomics

Scale AI in Imaging Now for the Post-COVID Era

VIDEO: Integrating Artificial Intelligence Into Radiologists Workflow

 

Northwestern Medicine Introduces Artificial Intelligence to Improve Ultrasound Imaging

Find more artificial intelligence news and video

 

 

 

Artificial Intelligence | February 21, 2020

In Artificial Intelligence at RSNA 2019, ITN Contributing Editor Greg Freiherr offers an overview of artificial intelligence (AI) advances at the Radiological Society of North America (RSNA) 2019 annual meeting.

Enterprise Imaging | February 21, 2020

In Enterprise Imaging at RSNA 2019, ITN Contributing Editor Greg Freiherr offers an overview of enterprise imaging advances at the Radiological Society of North America (RSNA) 2019 annual meeting.

Radiation Oncology View all 129 items

Radiation Therapy | November 24, 2021

Jeffrey T. Chapman, a medical student at the University of Texas Southwestern Medical Center, Explains how watching movies can be used to help sedate pediatric radiation therapy patients. He presented the results of the Pediatric Radiation Oncology With Movie Induced Sedation Effect (PROMISE) study at the 2021 American Society of Radiation Oncology (ASTRO) annual meeting.

Children usually have to be sedated with anesthesia to keep them immobile each day for weeks for their daily fractions of radiotherapy. This presents problems because the child will have side effects from the anesthesia and face issues with eating only at certain times. UTSW developed a system where the child can watch a movie and if they move the movie and the radiation beam both immediately shut off. This trains the child to stay still during treatments without the need for anesthesia.

Photo Gallery of Technologies at ASTRO 2021

Radiation Oncology Research Featured at ASTRO 2021

Find more radiation oncology technology news

Radiopharmaceuticals and Tracers | November 17, 2021

Ana Kiess, M.D., Ph.D., assistant professor of radiation oncology and molecular radiation sciences, Johns Hopkins University, explains the current state of patient-centered radiopharmaceutical therapy at the American Society of Radiation Oncology (ASTRO) 2021 meeting. 

She discusses development and use over the past decade of Radium-223 dichloride and Lutetium-177 dotatate. Kiess also expects there will be targeted injectable radiopharmaceuticals for nearly all solid tumor types in the next decade. She said her center is currently investigating the use of radiopharma agents to treat oligometastatic metastatic cancers.

Photo Gallery of Technologies at ASTRO 2021

Radiation Oncology Research Featured at ASTRO 2021

Find more radiation oncology technology news

Radiation Therapy | November 17, 2021

The Elekta Harmony radiotherapy system gained FDA clearance in the summer of 2021 and was on display for the first time at the American Society of Radiation Oncology (ASTRO) 2021 meeting. It offers fast treatments and the ability to track and treat multiple metastases at the same time. 

It has a large round screen on the machine so the patient's information is immediately available table side. It uses facial recognition to verify the correct patient is in the room for treatment.

The speed of the treatment delivery increased over that of prior systems, so the time a patient spends in the treatment room for lung SBRT went from 30 minutes down to less than 2 minutes. SBRT prostate went down from 5 minutes to 90 seconds. It also can perform hypofractionation lung therapy in a single 20 minute treatment.

Read more on the Harmony system. 

 

Photo Gallery of Technologies at ASTRO 2021

Radiation Oncology Research Featured at ASTRO 2021

Find more radiation oncology technology news

Radiation Oncology | November 16, 2021

This is a model of the Toshiba ion beam radiation therapy system at the American Society of Radiation Oncology (ASTRO) 2021 meeting. It shows the cyclotron, beam lines and two treatment rooms, one with a fixed beam and second with a rotating gantry.

Photo Gallery of Technologies at ASTRO 2021

Radiation Oncology Research Featured at ASTRO 2021

Find more radiation oncology technology news

Radiology Imaging View all 377 items

Computed Tomography (CT) | January 28, 2022

Charlie Hamm, M.D., a radiology resident at the Charité University Hospital of Berlin, Germany, presented a late-breaking study at the Radiological Society of North America (RSNA) 2021 annual meeting on the use of computed tomography (CT) scans to investigate dinosaur bones non-destructively. In the process of examining a tyrannosaurus rex jaw bone that is more than 66 million years old, a bone tumor was found and clearly shown on the CT scans.

This feasibility study to determine if CT can be used to aid paleontology was done in collaboration with the Museum für Naturkunde Berlin. Dual-energy computed tomography (DECT) was used to provide information about tissue composition and disease processes not possible with single-energy CT.

Read more in the article CT Uncovers Bone Disease in Tyrannosaurus Rex Jaw

Find more RSNA news and video

 

 

Quality Assurance (QA) | January 28, 2022

Mahadevappa Mahesh, Ph.D., chief physicist, Johns Hopkins Hospital, and professor of radiology and radiological science, explains the basics involved in quality assurance (QA) of radiology imaging systems. He spoke to ITN at the Radiological Society of North America (RSNA) 2021 annual meeting.

He explains the role of the medical physicist in keeping X-ray imaging systems such as CT, angiography and mammography calibrated and checking the device output of radiation. This is performed by imaging phantoms that mimic a simplified representation of the human body. 

Artificial intelligence (AI) use is growing in imaging and medical physics and QA of these systems might also become a duty of the medical physicist in some AI imaging applications.  

Find more content on QA systems

Find more RSNA news and video

Computed Tomography (CT) | January 27, 2022

Cynthia McCollough, Ph.D., director of Mayo Clinic's CT Clinical Innovation Center,  explains how photon-counting computed tomography (CT) detectors work and why it is a better technology over conventional CT systems. She helped Siemens develop the Naeotom Alpha, the first photo-counting CT system to be approved by the FDA in the fall of 2021. She spoke to ITN at the Radiological Society of North America (RSNA) 2021 annual meeting.

Read more about the first commercial photon-counting scanner 

The device uses the emerging CT technology of photon-counting detectors, which can measure each individual X-ray photon that passes through a patient's body, as opposed to current systems which use detectors that measure the total energy contained in many X-rays at once. By "counting" each individual X-ray photon, more detailed information about the patient can be obtained and used to create images with less information that is not useful, such as image noise. 

Current CT technology uses a two-step conversion process to convert X-ray photons into visible light using a scintillator layer in the detector. Then, photo diode light sensors turn the visible light into a digital signal. Due to this intermediate step, important information about the energy of the X-rays is lost and no longer available to aid in diagnosis. Also, contrast is reduced and images are not as clear.

Photon-counting detectors use a single step of direct conversion of X-rays into electrical current, and skips the step of converting X-rays into visible light. This allows the energy thresholds of each pulse to be collected and binned based on different kilovolt (kV) energy levels. This creates data to improve contrast and enable dual-energy, spectral imaging. The direct conversion also helps improve image quality without information loss. This improves image sharpness and contrast.

Photon-counting detectors have already been used for several years in high-energy physics and nuclear imaging. However, these previously generation photon-counting detectors could not be used with a clinical CT scanner because they could not keep up with the high higher rate of photons reaching the detector. The detector on the Naeotom Alpha was designed for this increased speed.

Related Photon-counting CT Content:

Mayo Clinic Begins Use of Third-Generation Photon-counting CT Clinical Research Detector

VIDEO: New Advances in CT Imaging Technology — Interview with Cynthia McCollough, Ph.D.

VIDEO: Photon Counting Detectors Will be the Next Major Advance in Computed Tomography — Interview with Todd Villines, M.D.

Key Trends in Cardiac CT at SCCT 2020

GE Healthcare Pioneers Photon Counting CT with Prismatic Sensors Acquisition

Top Trend Takeaways in Radiology From RSNA 2020

NeuroLogica Joins Forces with Massachusetts General Hospital to Pilot Photon Counting CT at the Patient’s Point-Of-Care Using OmniTom Elite CT

VIDEO: Advances in Cardiac CT Imaging — Interview with David Bluemke, M.D.

Computed Tomography (CT) | January 27, 2022

Cynthia McCollough, Ph.D., director of Mayo Clinic's Computed Tomography (CT) Clinical Innovation Center, explains how CT dose tracking software works and offers advice to centers that record this patient level and device information. She spoke to ITN at the Radiological Society of North America (RSNA) 2021 annual meeting.

Dose tracking software allows hospitals and imaging centers to track what levels of radiation they are using by exam type protocol. It can show technologists who are using higher than required doses that may need additional ALARA training. The radiation dose tracking systems also can help track the amount of radiation a patient has received over time.

Related Radiation Dose Tracking Systems:

Disputed EHR Dose Levels Could Keep Patients From Necessary Imaging Exams

Medical Imaging Radiation Exposure in U.S. Dropped Over Past Decade

VIDEO: Radiation From Medical Imaging in U.S. Dropped Over Past Decade

The Basics of Radiation Dose Monitoring in Medical Imaging

VIDEO: Radiation Dose Monitoring in Medical Imaging — Interview with Mahadevappa Mahesh, Ph.D.
 

----

 

Molecular Imaging View all 32 items

Radiopharmaceuticals and Tracers | November 17, 2021

Ana Kiess, M.D., Ph.D., assistant professor of radiation oncology and molecular radiation sciences, Johns Hopkins University, explains the current state of patient-centered radiopharmaceutical therapy at the American Society of Radiation Oncology (ASTRO) 2021 meeting. 

She discusses development and use over the past decade of Radium-223 dichloride and Lutetium-177 dotatate. Kiess also expects there will be targeted injectable radiopharmaceuticals for nearly all solid tumor types in the next decade. She said her center is currently investigating the use of radiopharma agents to treat oligometastatic metastatic cancers.

Photo Gallery of Technologies at ASTRO 2021

Radiation Oncology Research Featured at ASTRO 2021

Find more radiation oncology technology news

Radiation Oncology | November 16, 2021

Walter Curran, Jr. M.D., FACR, FASCO, GenesisCare global chief medical officer, discusses three technologies that are helping advance radiation oncology care during the American Society of Radiation Oncology (ASTRO) 2021 meeting. These technology advances include:

   • Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) imaging for prostate cancer.

   • MRI-linear accelerator (Linac) systems that allow real-time imaging during radiation therapy.

   • Remote treatment planning to help radiation treatment centers that are in rural areas.

Prostate cancer is one of the most common cancers in men. The new PSMA PET imaging is expected to significantly improve how prostate cancer is detected and treated. The FDA approved the drug for PET nuclear imaging of PSMA-positive lesions in men with prostate cancer. 68Ga-PSMA-11 is a radioactive imaging agent that binds to prostate cancer cells to help localize prostate cancer cells.

Photo Gallery of Technologies at ASTRO 2021

Radiation Oncology Research Featured at ASTRO 2021

Find more radiation oncology technology news

Coronavirus (COVID-19) | May 11, 2021

Yael Eshet, M.D., MSc, a diagnostic radiology specialist at Sheba Medical Center in Israel, was the lead author on a recent study that showed COVID-19 (SARS-CoV-2) vaccine adenopathy can persist more than 6 weeks. This swelling of lymph nodes is similar to what is seen cancer and infections and the new findings show it can last longer than 7-10 weeks. The current recommended time people should delay medical imaging is 6 weeks after receiving a COVID vaccine to avoid a misdiagnosis,[2] but this new study shows there is increased inflammation shown on PET-CT imaging for much longer.

These were the findings in the Radiology published study "Prevalence of Increased FDG PET/CT Axillary Lymph Node Uptake Beyond 6 Weeks after mRNA COVID-19 Vaccination."[1]

Researchers using fluorodeoxyglucose (FDG)-positron emission tomography (PET) have found increased FDG uptake in the lymph nodes of patients 7-10 weeks past their second mRNA-based Pfizer-BioNTech COVID-19 vaccination. This new information indicates a persistent immune response that could be mistaken on imaging exams for serious conditions like lymphoma over a much longer period of time.

Recent recommendations for post-vaccine lymphadenopathy advise scheduling routine imaging, such as screening mammography, before, or at least 6 weeks after, the final vaccination dose to eliminate false positive results. However, this new research showed that avid axillary lymph node uptake was present beyond 6 weeks after the second vaccination in more than 29% of the patients in the study cohort.

The authors stated “This study shows that avid axillary lymph node uptake on FDG PET/CT can be detected in more than a quarter of our patient population even beyond 6 weeks after the second dose of the mRNA-based COVID-19 vaccination. Compared to a previous study showing normalization of FDG uptake within 40 days of receiving an inactivated H1N1 influenza vaccine, we found uptake persistence even at 70 days. Physicians should be aware of this potential pitfall.”

Some images in this video are from another Radiology study, which showed PET tracer uptake at the COVID vaccine injection site and other examples of axillary adenopathy.[3]

 

Related COVID Vaccine Axillary Adenapathy Content:

COVID-19 Vaccine Can Cause False Positive Cancer Diagnosis

Help Spread Awareness of Potential COVID-19 Vaccine Imaging Side-effects

VIDEO: COVID Vaccine May Cause Enlarged Lymph Nodes on Mammograms — Interview with Constance "Connie" Lehman, M.D.

COVID-19 Vaccination Axillary Adenopathy Detected During Breast Imaging

PHOTO GALLERY: How COVID-19 Appears on Medical Imaging

CMS Now Requires COVID-19 Vaccinations for Healthcare Workers by January 4

Find more radiology related COVID content 

References:

1. Yael Eshet, Noam Tau1, Yousef Alhoubani, Nayroz Kanana, Liran Domachevsky, Michal Eifer. Prevalence of Increased FDG PET/CT Axillary Lymph Node Uptake Beyond 6 Weeks after mRNA COVID-19 Vaccination. Radiology. Published Online:Apr 27 2021https://doi.org/10.1148/radiol.2021210886.

2. Constance D. Lehman, Leslie R. Lamb, and Helen Anne D'Alessandro. Mitigating the Impact of Coronavirus Disease (COVID-19) Vaccinations on Patients Undergoing Breast Imaging Examinations: A Pragmatic Approach American Journal of Roentgenology. 10.2214/AJR.21.25688.

3. Can Özütemiz, Luke A. Krystosek, An L. Church, Anil Chauhan, Jutta M. Ellermann, Evidio Domingo-Musibay, Daniel Steinberger. Lymphadenopathy in COVID-19 Vaccine Recipients: Diagnostic Dilemma in Oncology Patients. Radiology. Published Online:Feb 24 2021https://doi.org/10.1148/radiol.2021210275.

 

PET-CT | December 04, 2020

This is an example of Canon's Advanced intelligent Clear-IQ Engine (AiCE) AI-driven image reconstruction software that is now being used to improve image quality on the Canon Celesteion Prime PET/CT nuclear imaging system. The deep learning is used to enhance the iterative reconstruction used to reduce noise and sharped high contrast resolution on positron emission tomography (PET) images from the digital PET detector used on the system. 

This example is a whole-body FGD PET scan of a patient with a large BMI with lung cancer.

The Cartesion Prime PET/CT is the industry’s only air-cooled digital PET/CT, provides variable bed time (vBT) acquisition as a standard feature. This and the new FDA 510(k)-pending AiCE technology were highlighted at the 2020 Radiological Society of North America (RSNA) virtual meeting. 

Find more RSNA news

 

Conference Coverage View all 499 items

Computed Tomography (CT) | January 28, 2022

Charlie Hamm, M.D., a radiology resident at the Charité University Hospital of Berlin, Germany, presented a late-breaking study at the Radiological Society of North America (RSNA) 2021 annual meeting on the use of computed tomography (CT) scans to investigate dinosaur bones non-destructively. In the process of examining a tyrannosaurus rex jaw bone that is more than 66 million years old, a bone tumor was found and clearly shown on the CT scans.

This feasibility study to determine if CT can be used to aid paleontology was done in collaboration with the Museum für Naturkunde Berlin. Dual-energy computed tomography (DECT) was used to provide information about tissue composition and disease processes not possible with single-energy CT.

Read more in the article CT Uncovers Bone Disease in Tyrannosaurus Rex Jaw

Find more RSNA news and video

 

 

Quality Assurance (QA) | January 28, 2022

Mahadevappa Mahesh, Ph.D., chief physicist, Johns Hopkins Hospital, and professor of radiology and radiological science, explains the basics involved in quality assurance (QA) of radiology imaging systems. He spoke to ITN at the Radiological Society of North America (RSNA) 2021 annual meeting.

He explains the role of the medical physicist in keeping X-ray imaging systems such as CT, angiography and mammography calibrated and checking the device output of radiation. This is performed by imaging phantoms that mimic a simplified representation of the human body. 

Artificial intelligence (AI) use is growing in imaging and medical physics and QA of these systems might also become a duty of the medical physicist in some AI imaging applications.  

Find more content on QA systems

Find more RSNA news and video

Enterprise Imaging | January 27, 2022

Rik Primo, principle at Primo Medical Imaging Informatics Consultants and former health IT developer with Siemens, Philips and Agfa, explains the difference cloud-native versus cloud-enabled PACS and radiology enterprise imaging systems. He spoke with ITN during RSNA 2021.the Radiological Society of North America (RSNA) 2021 annual meeting.

Find more RSNA news and video

Related content on enterprise imaging

 

Artificial Intelligence | January 27, 2022

Emanuel Kanal, M.D., FACR, FISMRM, AANG, director of the department of emergency radiology and teleradiology, director of MRI services, and professor of radiology and neuroradiology at the University of Pittsburgh, explains artificial intelligence (AI) is the biggest over all trend in radiology at  the Radiological Society of North America (RSNA) 2021 annual meeting.

VIDEO: Artificial Intelligence Trends in Medical Imaging — Interview with Sanjay Parekh, Ph.D.

VIDEO: Examples of Artificial Intelligence Pulmonary Embolism Response Team Apps

Technology Report: Artificial Intelligence in Radiology 2021

Find more AI news

Find more RSNA news and video

Information Technology View all 278 items

Enterprise Imaging | January 27, 2022

Rik Primo, principle at Primo Medical Imaging Informatics Consultants and former health IT developer with Siemens, Philips and Agfa, explains the difference cloud-native versus cloud-enabled PACS and radiology enterprise imaging systems. He spoke with ITN during RSNA 2021.the Radiological Society of North America (RSNA) 2021 annual meeting.

Find more RSNA news and video

Related content on enterprise imaging

 

Artificial Intelligence | January 27, 2022

Emanuel Kanal, M.D., FACR, FISMRM, AANG, director of the department of emergency radiology and teleradiology, director of MRI services, and professor of radiology and neuroradiology at the University of Pittsburgh, explains artificial intelligence (AI) is the biggest over all trend in radiology at  the Radiological Society of North America (RSNA) 2021 annual meeting.

VIDEO: Artificial Intelligence Trends in Medical Imaging — Interview with Sanjay Parekh, Ph.D.

VIDEO: Examples of Artificial Intelligence Pulmonary Embolism Response Team Apps

Technology Report: Artificial Intelligence in Radiology 2021

Find more AI news

Find more RSNA news and video

Computed Tomography (CT) | January 27, 2022

Cynthia McCollough, Ph.D., director of Mayo Clinic's CT Clinical Innovation Center,  explains how photon-counting computed tomography (CT) detectors work and why it is a better technology over conventional CT systems. She helped Siemens develop the Naeotom Alpha, the first photo-counting CT system to be approved by the FDA in the fall of 2021. She spoke to ITN at the Radiological Society of North America (RSNA) 2021 annual meeting.

Read more about the first commercial photon-counting scanner 

The device uses the emerging CT technology of photon-counting detectors, which can measure each individual X-ray photon that passes through a patient's body, as opposed to current systems which use detectors that measure the total energy contained in many X-rays at once. By "counting" each individual X-ray photon, more detailed information about the patient can be obtained and used to create images with less information that is not useful, such as image noise. 

Current CT technology uses a two-step conversion process to convert X-ray photons into visible light using a scintillator layer in the detector. Then, photo diode light sensors turn the visible light into a digital signal. Due to this intermediate step, important information about the energy of the X-rays is lost and no longer available to aid in diagnosis. Also, contrast is reduced and images are not as clear.

Photon-counting detectors use a single step of direct conversion of X-rays into electrical current, and skips the step of converting X-rays into visible light. This allows the energy thresholds of each pulse to be collected and binned based on different kilovolt (kV) energy levels. This creates data to improve contrast and enable dual-energy, spectral imaging. The direct conversion also helps improve image quality without information loss. This improves image sharpness and contrast.

Photon-counting detectors have already been used for several years in high-energy physics and nuclear imaging. However, these previously generation photon-counting detectors could not be used with a clinical CT scanner because they could not keep up with the high higher rate of photons reaching the detector. The detector on the Naeotom Alpha was designed for this increased speed.

Related Photon-counting CT Content:

Mayo Clinic Begins Use of Third-Generation Photon-counting CT Clinical Research Detector

VIDEO: New Advances in CT Imaging Technology — Interview with Cynthia McCollough, Ph.D.

VIDEO: Photon Counting Detectors Will be the Next Major Advance in Computed Tomography — Interview with Todd Villines, M.D.

Key Trends in Cardiac CT at SCCT 2020

GE Healthcare Pioneers Photon Counting CT with Prismatic Sensors Acquisition

Top Trend Takeaways in Radiology From RSNA 2020

NeuroLogica Joins Forces with Massachusetts General Hospital to Pilot Photon Counting CT at the Patient’s Point-Of-Care Using OmniTom Elite CT

VIDEO: Advances in Cardiac CT Imaging — Interview with David Bluemke, M.D.

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

Women's Health View all 78 items

Breast Imaging | December 13, 2021

Stamatia Destounis, M.D., FACR, chief of the American College of Radiology (ACR) Breast Commission, managing partner, Elizabeth Wende Breast Care, Rochester, N.Y., explains some of the key trends in breast imaging at the 2021  Radiological Society of North America (RSNA) meeting.

She discusses the trends of 3D mammography seeing rapid growth, adoption of synthetic 2D breast images from the tomosynthesis datasets, contrast-enhanced mammography, and breast MRI to help women with dense breast tissue. Destounis also discusses the use of artificial intelligence (AI) to help radiologists with finding what they needs with larger datasets in 3D mammography, and to help act as a second set of eyes.

Early in 2021, with the roll out of the COVID vaccines, one of the biggest headlines in radiology was that the vaccine can show false positives for cancer because it may cause inflammation of lymph nodes. Destounis explains this issue and how women's health centers have largely overcome this by asking patients about their vaccination status and planning imaging around the vaccination dates.

Related Breast Imaging Content:

COVID-19 Vaccine Can Cause False Positive Cancer Diagnosis

Help Spread Awareness of Potential COVID-19 Vaccine Imaging Side-effects

VIDEO: COVID Vaccine May Cause Enlarged Lymph Nodes on Mammograms — Interview with Constance "Connie" Lehman, M.D.

COVID-19 Vaccination Axillary Adenopathy Detected During Breast Imaging

VIDEO: COVID Vaccine Adenopathy Can Last Up to 10 Weeks — Interview with Yael Eshet, M.D.

VIDEO: Artificial Intelligence Trends in Medical Imaging — Interview with Signify Research

Technology Report: Artificial Intelligence in Radiology 2021

Find more RSNA news and video

Coronavirus (COVID-19) | May 11, 2021

Yael Eshet, M.D., MSc, a diagnostic radiology specialist at Sheba Medical Center in Israel, was the lead author on a recent study that showed COVID-19 (SARS-CoV-2) vaccine adenopathy can persist more than 6 weeks. This swelling of lymph nodes is similar to what is seen cancer and infections and the new findings show it can last longer than 7-10 weeks. The current recommended time people should delay medical imaging is 6 weeks after receiving a COVID vaccine to avoid a misdiagnosis,[2] but this new study shows there is increased inflammation shown on PET-CT imaging for much longer.

These were the findings in the Radiology published study "Prevalence of Increased FDG PET/CT Axillary Lymph Node Uptake Beyond 6 Weeks after mRNA COVID-19 Vaccination."[1]

Researchers using fluorodeoxyglucose (FDG)-positron emission tomography (PET) have found increased FDG uptake in the lymph nodes of patients 7-10 weeks past their second mRNA-based Pfizer-BioNTech COVID-19 vaccination. This new information indicates a persistent immune response that could be mistaken on imaging exams for serious conditions like lymphoma over a much longer period of time.

Recent recommendations for post-vaccine lymphadenopathy advise scheduling routine imaging, such as screening mammography, before, or at least 6 weeks after, the final vaccination dose to eliminate false positive results. However, this new research showed that avid axillary lymph node uptake was present beyond 6 weeks after the second vaccination in more than 29% of the patients in the study cohort.

The authors stated “This study shows that avid axillary lymph node uptake on FDG PET/CT can be detected in more than a quarter of our patient population even beyond 6 weeks after the second dose of the mRNA-based COVID-19 vaccination. Compared to a previous study showing normalization of FDG uptake within 40 days of receiving an inactivated H1N1 influenza vaccine, we found uptake persistence even at 70 days. Physicians should be aware of this potential pitfall.”

Some images in this video are from another Radiology study, which showed PET tracer uptake at the COVID vaccine injection site and other examples of axillary adenopathy.[3]

 

Related COVID Vaccine Axillary Adenapathy Content:

COVID-19 Vaccine Can Cause False Positive Cancer Diagnosis

Help Spread Awareness of Potential COVID-19 Vaccine Imaging Side-effects

VIDEO: COVID Vaccine May Cause Enlarged Lymph Nodes on Mammograms — Interview with Constance "Connie" Lehman, M.D.

COVID-19 Vaccination Axillary Adenopathy Detected During Breast Imaging

PHOTO GALLERY: How COVID-19 Appears on Medical Imaging

CMS Now Requires COVID-19 Vaccinations for Healthcare Workers by January 4

Find more radiology related COVID content 

References:

1. Yael Eshet, Noam Tau1, Yousef Alhoubani, Nayroz Kanana, Liran Domachevsky, Michal Eifer. Prevalence of Increased FDG PET/CT Axillary Lymph Node Uptake Beyond 6 Weeks after mRNA COVID-19 Vaccination. Radiology. Published Online:Apr 27 2021https://doi.org/10.1148/radiol.2021210886.

2. Constance D. Lehman, Leslie R. Lamb, and Helen Anne D'Alessandro. Mitigating the Impact of Coronavirus Disease (COVID-19) Vaccinations on Patients Undergoing Breast Imaging Examinations: A Pragmatic Approach American Journal of Roentgenology. 10.2214/AJR.21.25688.

3. Can Özütemiz, Luke A. Krystosek, An L. Church, Anil Chauhan, Jutta M. Ellermann, Evidio Domingo-Musibay, Daniel Steinberger. Lymphadenopathy in COVID-19 Vaccine Recipients: Diagnostic Dilemma in Oncology Patients. Radiology. Published Online:Feb 24 2021https://doi.org/10.1148/radiol.2021210275.

 

Breast Imaging | March 26, 2021

Constance "Connie" Lehman, M.D., Ph.D., chief of breast imaging, co-director of the Avon Comprehensive Breast Evaluation Center at the Massachusetts General Hospital, and professor of radiology at Harvard Medical School, explains issues and suggested guidelines for women who receive the COVID-19 vaccine and need to get a mammogram. In the first three months since the vaccines have been released, there have been numerous case reports of the vaccine causing swollen lymph nodes. This is would usually raise a red flag for breast cancer, but is normal for many women receiving the vaccine as their body's immune system gears up against the virus. 

Lehman said cases reports of axillary adenopathy have been identified on breast imaging after coronavirus disease (COVID-19) vaccination and are rising. Lehman et al. proposed a pragmatic management approach in a recent article in the American Journal of Roentgenology (AJR).[1]

In the settings of screening mammography, screening MRI and diagnostic imaging work-up of breast symptoms, with no imaging findings beyond unilateral axillary adenopathy ipsilateral to recent (prior six weeks) vaccination, they report the adenopathy as benign with no further imaging indicated if no nodes are palpable six weeks after the last vaccine dose. 

For patients with palpable axillary adenopathy in the setting of ipsilateral recent vaccination, clinical follow-up of the axilla is recommended. In all these scenarios, axillary ultrasound is recommended if clinical concern persists six weeks after vaccination. 

In patients with recent breast cancer diagnosis in the pre- or peri-treatment setting, prompt recommended imaging is encouraged as well as vaccination (in the thigh or contralateral arm). The recommendations align with the ACR BI-RADS Atlas and aim to: 1) reduce patient anxiety, provider burden, and costs of unnecessary evaluation of enlarged nodes in the setting of recent vaccination, and 2) avoid further delays in vaccinations and breast cancer screening during the pandemic.

 

Related Medical Imaging of COVID Content:

COVID-19 Vaccination Axillary Adenopathy Detected During Breast Imaging

CMS Now Requires COVID-19 Vaccinations for Healthcare Workers by January 4

PHOTO GALLERY: How COVID-19 Appears on Medical Imaging

VIDEO: Imaging COVID-19 With Point-of-Care Ultrasound (POCUS) — Interview with Mike Stone, M.D.

VIDEO: Use of Teleradiology During the COVID-19 Pandemic — Interview with John Kim, M.D.

Find more radiology related COVID content 

 

Reference:

1. Constance D. Lehman, Leslie R. Lamb, and Helen Anne D'Alessandro. Mitigating the Impact of Coronavirus Disease (COVID-19) Vaccinations on Patients Undergoing Breast Imaging Examinations: A Pragmatic Approach American Journal of Roentgenology. 10.2214/AJR.21.25688

 

 

Artificial Intelligence | November 11, 2020

Artificial Intelligence (AI) is becoming more common place in radiology practices, and emerging technologies are providing radiologists with sophisticated detection software to aid their reading and provide support for a busy workflow. With the progression of AI technology, vendors must look not only at what AI can do for the radiologist, but how the radiologist and the technician interact with that technology –  the goal should be increasing accuracy while also positively improving workflow. GE Healthcare is working to improve radiology AI workflow in its Centricity Universal Viewer.

Three key opinion leaders offers their views on what is needed to make AI more valauble and accessible to radiologists. These include:

   • Amy Patel, M.D., breast radiologist, medical director, Liberty Hospital Women's Imaging, assistant professor of radiology, University of Missouri-Kansas City.

   • Prof. Dr. Thomas Frauenfelder, M.D., vice chairman and professor of thoracic radiology, Institute for Diagnostic and Interventional Radiology, University of Zurich.

   • Randy Hicks, M.D., chief executive officer, Regional Medical Imaging.

 

Learn more about the Centricity Universal Viewer in the VIDEO: How GE Healthcare’s Zero Footprint Remote Image Viewer Supports Clinical Care

 

 

 

 

 

Subscribe Now