News | Neuro Imaging | March 22, 2019

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

Researchers use PET and MRI to show alcohol significantly affects brain glucose metabolism and regional brain activity

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improves our understanding of how alcohol affects the brain, according to new research by scientists at the National Institutes of Health. The new approach for characterizing brain energetic patterns could also be useful for studying other neuropsychiatric diseases. A report of the findings is now online in Nature Communications.1

“The brain uses a lot of energy compared to other body organs, and the association between brain activity and energy utilization is an important marker of brain health,” said George F. Koob, Ph.D., director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of NIH, which funded the study. “This study introduces a new way of characterizing how brain activity is related to its consumption of glucose, which could be very useful in understanding how the brain uses energy in health and disease.”

The research was led by Ehsan Shokri-Kojori, Ph.D., and Nora D. Volkow, M.D., of the NIAAA Laboratory of Neuroimaging. Volkow is also the director of the National Institute on Drug Abuse at NIH. In previous studies, they and their colleagues have shown that alcohol significantly affects brain glucose metabolism, a measure of energy use, as well as regional brain activity, which is assessed through changes in blood oxygenation.

“The findings from this study highlight the relevance of energetics for ensuring normal brain function and reveal how it is disrupted by excessive alcohol consumption,” said Volkow.

In their new study, the researchers combined human brain imaging techniques, including FDG-positron emission tomography (PET) and magnetic resonance imaging (MRI), for measuring glucose metabolism and neuronal activity to derive new measures, which they termed power and cost.

“We measured power by observing to what extent brain regions are active and use energy,” explained Shokri-Kojori. “We measured cost of brain regions by observing to what extent their energy use exceeds their underlying activity.”

In a group of healthy volunteers, the researchers showed that different brain regions that serve distinct functions have notably different power and different cost. They then investigated the effects of alcohol on these new measures by assessing a group of people that included light drinkers and heavy drinkers and found that both acute and chronic exposure to alcohol affected power and cost of brain regions.

“In heavy drinkers, we saw less regional power for example in the thalamus, the sensory gateway, and frontal cortex of the brain, which is important for decision making,” said Shokri-Kojori. “These decreases in power were interpreted to reflect toxic effects of long-term exposure to alcohol on the brain cells.”

The researchers also found a decrease in power during acute alcohol exposure in the visual regions, which was related to disruption of visual processing. At the same time, visual regions had the most significant decreases in cost of activity during alcohol intoxication, which is consistent with the reliance of these regions on alternative energy sources such as acetate, a byproduct of alcohol metabolism.

They conclude that despite widespread decreases in glucose metabolism in heavy drinkers compared to light drinkers, heavy drinking shifts the brain toward less efficient energetic states. Future studies are needed to investigate the mechanisms contributing to this relative inefficiency.

“Studying energetic signatures of brain regions in different neuropsychiatric diseases is an important future direction, as the measures of power and cost may provide new multimodal biomarkers for such disorders,” said Shokri-Kojori.

For more information: www.nature.com/ncomms

Reference

1. Shokri-Kojori E., Tomasi D., Alipanahi B., et al. Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain. Nature Communications, Feb. 11, 2019. https://doi.org/10.1038/s41467-019-08546-x

Related Content

Vaping Impairs Vascular Function

Image courtesy of the American Heart Association

News | Magnetic Resonance Imaging (MRI) | August 21, 2019
Inhaling a vaporized liquid solution through an e-cigarette, otherwise known as vaping, immediately impacts vascular...
Improved Imaging Technique Could Increase Chances of Prostate Cancer Survival
News | Prostate Cancer | August 20, 2019
According to the American Cancer Society, approximately one in nine men will be diagnosed with prostate cancer in their...
Some Pregnant Women Are Exposed to Gadolinium in Early Pregnancy
News | Women's Health | August 20, 2019
A small but concerning number of women are exposed to a commonly used magnetic resonance imaging (MRI) contrast agent...
New MRI Technique Captures Brain Changes in Near-real Time

Differences in stiffness between stimulus states. Image courtesy of Patz et al.

News | Neuro Imaging | August 19, 2019
An international team of researchers developed a new magnetic resonance imaging (MRI) technique that can capture an...
Mobile Stroke Unit Gets Patients Quicker Treatment Than Traditional Ambulance

Image courtesy of UTHealth McGovern Medical School

News | Stroke | August 16, 2019
Every second counts for stroke patients, as studies show they can lose up to 27 million brain cells per minute....
ADHD Medication May Affect Brain Development in Children

Images of regions of interest (colored lines) in the white matter skeleton representation. Data from left and right anterior thalamic radiation (ATR) were averaged. Image courtesy of C. Bouziane et al.

News | Neuro Imaging | August 16, 2019
A drug used to treat attention-deficit/hyperactivity disorder (ADHD) appears to affect development of the brain’s...
Profound Medical Receives U.S. FDA 510(k) Clearance for Tulsa-Pro
Technology | Interventional Radiology | August 16, 2019
Profound Medical Corp. announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to...
United Imaging Announces First U.S. Clinical Installation of uExplorer Total-body PET/CT
News | PET-CT | August 15, 2019
United Imaging announced that its uExplorer total-body positron emission tomography/computed tomography (PET/CT) system...
First Patient Enrolled in World's Largest Brain Cancer Clinical Trial
News | Radiation Therapy | August 15, 2019
Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive...