News | Neuro Imaging | January 09, 2018

New Studies Show Brain Impact of Youth Football

fMRI data reveals changes in players’ brains after one season of competition

New Studies Show Brain Impact of Youth Football

January 9, 2018 — School-age football players with a history of concussion and high impact exposure undergo brain changes after one season of play, according to two new studies conducted at UT Southwestern Medical Center in Dallas and Wake Forest Baptist Medical Center in Winston-Salem and presented at the 2017 annual meeting of the Radiological Society of North America (RSNA), Nov. 26-Dec. 1 in Chicago.

Both studies analyzed the default mode network (DMN), a network of brain regions that is active during wakeful rest. Changes in the DMN are observed in patients with mental disorders. Decreased connectivity within the network is also associated with traumatic brain injury.

"The DMN exists in the deep gray matter areas of the brain," explained Elizabeth M. Davenport, Ph.D., a postdoctoral researcher in the Advanced NeuroScience Imaging Research (ANSIR) lab at UT Southwestern's O'Donnell Brain Institute. "It includes structures that activate when we are awake and engaging in introspection or processing emotions, which are activities that are important for brain health."

In the first study, researchers studied youth football players without history of concussion to identify the effect of repeated subconcussive impacts on the DMN.

"Over a season of football, players are exposed to numerous head impacts. The vast majority of these do not result in concussion," said Gowtham Krishnan Murugesan, a Ph.D. student in biomedical engineering and member of the ANSIR lab. "This work adds to a growing body of literature indicating that subconcussive head impacts can have an effect on the brain. This is a highly understudied area at the youth and high school level."

For the study, 26 youth football players (ages 9-13) were outfitted with the Head Impact Telemetry System (HITS) for an entire football season. HITS helmets are lined with accelerometers or sensors that measure the magnitude, location and direction of impacts to the head. Impact data from the helmets were used to calculate a risk of concussion exposure for each player.

Players were equally divided into high and low concussion exposure groups. Players with a history of concussion were excluded. A third group of 13 non-contact sport controls was established. Pre- and post-season resting functional magnetic resonance imaging (fMRI) scans were performed on all players and controls, and connectivity within the DMN sub-components was analyzed.

The researchers used machine learning to analyze the fMRI data. Machine learning is a type of artificial intelligence that allows computers to perform analyses based on existing relationships of data.

"Machine learning has a lot to add to our research because it gives us a fresh perspective and an ability to analyze the complex relationships within the data," said Murugesan. "Our results suggest an increasing functional change in the brain with increasing head impact exposure."

Five machine learning classification algorithms were used to predict whether players were in the high-exposure, low-exposure or non-contact groups based on the fMRI results. The algorithm discriminated between high-impact exposure and non-contact with 82 percent accuracy, and low-impact exposure and non-contact with 70 percent accuracy. The results suggest an increasing functional change with increasing head-impact exposure.

"The brains of these youth and adolescent athletes are undergoing rapid maturation in this age range. This study demonstrates that playing a season of contact sports at the youth level can produce neuroimaging brain changes, particularly for the DMN," Murugesan said.

In the second study, 20 high school football players (median age 16.9) wore helmets outfitted with HITS for a season. Of the 20 players, five had experienced at least one concussion, and 15 had no history of concussion.

Before and following the season, the players underwent an eight-minute magnetoencephalography (MEG) scan, which records and analyzes the magnetic fields produced by brain activity. Researchers then analyzed the MEG power associated with the eight brain regions of the DMN.

Post-season, the five players with a history of concussion had significantly lower connectivity between DMN regions. Players with no history of concussion had, on average, an increase in DMN connectivity.

The results demonstrate that concussions from previous years can influence the changes occurring in the brain during the current season, suggesting that there are longitudinal effects of concussion that affect brain function.

"The brain's default mode network changes differently as a result of previous concussion," Davenport said. "Previous concussion seems to prime the brain for additional changes. Concussion history may be affecting the brain's ability to compensate for subconcussive impacts."

Both researchers said larger datasets, longitudinal studies that follow young football players and research that combines both MEG and fMRI are needed to better understand the complex factors involved in concussions.

Murugesan co-authors are Afarin Famili, Elizabeth M. Davenport, Ph.D., Ben Wagner, B.M., Christopher T. Whitlow, M.D., Ph.D., Joel Stitzel, Jillian Urban, Joseph A. Maldjian, M.D., and Albert Montillo, Ph.D.

Davenport co-authors are Jillian Urban, Ben Wagner, B.M., Mark A. Espeland, Ph.D., Alexander K. Powers, M.D., Christopher T. Whitlow, M.D., Ph.D., Joel Stitzel, and Joseph A. Maldjian, M.D.

This work is part of several National Institutes of Health (NIH)-funded studies of youth and high school football, with additional funding from the Childress Institute for Pediatric Trauma. Data collection performed by researchers at Wake Forest University, and data analysis done by researchers at UT Southwestern.

For more information: www.rsna.org

Key RSNA 2017 Study Presentations, Trends and Video

 

Related Content

This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F)  #COVID19

This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F) No hemosiderin deposits in gradient echo sequences.

Feature | Coronavirus (COVID-19) | July 06, 2020 | Dave Fornell, Editor
Four recent radiology studies, from New York, Italy, Iran and China, show how...
A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

News | Magnetic Resonance Imaging (MRI) | July 02, 2020
July 2, 2020 — Axonics Modulation Technologies, Inc., a medical technology company that has developed and is commerci
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 30, 2020 | By Melinda Taschetta-Millane
Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Pediatric Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic r...
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020.

Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020. Courtesy of Nature Medicine

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The characterization of COVID-19