News | Nuclear Imaging | March 08, 2018

High-resolution Brain Imaging Provides Clues About Memory Loss in Older Adults

Researchers report that data from high-resolution functional brain imaging can be used to show underlying causes for differences in memory proficiency between older and younger adults

The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain.

This figure shows two different brains that are aligned to a common template space for comparison. The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain. CREDIT: Zachariah Reagh

As we get older, it's not uncommon to experience "senior moments," in which we forget where we parked our car or call our children by the wrong names. But currently there are no good ways to determine which memory lapses are normal parts of aging and which may signal the early stages of a severe disorder like Alzheimer's disease. In a study appearing March 7 in the journal Neuron, researchers report that data from high-resolution functional brain imaging can be used to show some of the underlying causes for differences in memory proficiency between older and younger adults.

"At the fundamental level, we still understand very little about how aging affects the neural systems that give rise to memory," says Zachariah Reagh, the study's first author, who is now a postdoctoral fellow at the University of California, Davis.

The paper reports data from 20 young adults (ages 18 to 31) and 20 cognitively healthy older adults (ages 64 to 89). The participants were asked to perform two kinds of tasks in an fMRI scanner, an object memory task and a location memory task. Because fMRI looks at the dynamics of blood flow in the brain, it enables investigators to determine which parts of their brains the subjects are using in each task.

In the object task, participants learned pictures of everyday objects and were then asked to distinguish them from new pictures. "Some of the pictures were identical to ones they've seen before, some were brand new, and others were similar to what they've seen before--we may change the color or the size," saids Michael Yassa, Director of the Center for the Neurobiology of Learning and Memory at the University of California, Irvine, and the study's senior author. "We call these tricky items the 'lures.' And we found that older adults struggle with these lures. They are much more likely than younger adults to think they've seen those lures before."

The second task was very similar but required subjects to determine during test whether objects changed their location. For this type of memory task, older adults fared quite a bit better. "This suggests that not all memory changes equally with aging," says Reagh. "Object memory is far more vulnerable than spatial memory, at least in the early stages." Other studies have shown that problems with spatial memory and navigation do manifest as individuals go down the path to Alzheimer's disease.

Importantly, by scanning the subjects' brains while they underwent these tests, the researchers were able to establish a mechanism within the brain for that deficit in object memory.

They found that it was linked to a loss of signaling in the part of the brain called the anterolateral entorhinal cortex. This area was already known to mediate the communication between the hippocampus, where information is first encoded, and the rest of the neocortex, which plays a role in long-term storage. It is also an area that is known to be severely affected in people with Alzheimer's disease.

"The loss of fMRI signal means there is less blood flow to the region, but we believe the underlying basis for this loss has to do with the fact that the structural integrity of that region of the brain is changing," Yassa explained. "One of the things we know about Alzheimer's disease is that this region of the brain is one of the very first to exhibit a key hallmark of the disease, deposition of neurofibrillary tangles."

In contrast, the researchers did not find age-related differences in another area of the brain connected to memory, the posteromedial entorhinal cortex. They demonstrated that this region plays a role in spatial memory, which was also not significantly impaired in the older subjects. "These findings suggest that the brain aging process is selective," Yassa added. "Our findings are not a reflection of general brain aging, but rather specific neural changes that are linked to specific problems in object but not spatial memory."

To determine whether this type of fMRI scan could eventually be used as a tool for early diagnosis, the researchers plan to expand their work to a sample of 150 older adults who will be followed over time. They will also be conducting PET scans to look for amyloid and tau pathology in their brains as they age.

"We hope this comprehensive imaging and cognitive testing will enable us to figure out whether the deficits we saw in the current study are indicative of what is later to come in some of these individuals," Yassa said.

"Our results, as well as similar results from other labs, point to a need for carefully designed tasks and paradigms that can reveal different functions in key areas of the brain and different vulnerabilities to the aging process," Reagh concluded.

For more information: http://www.cell.com/neuron/fulltext/S0896-6273(18)30064-3

Related Content

Imaging volumes in hospitals and practices previously slowed by the coronavirus pandemic continue to hold steady, according to new QuickPoLL survey results that gauge how radiologists feel about current business and the impact of COVID-19.
Feature | Coronavirus (COVID-19) | August 03, 2020 | By Melinda Taschetta-Millane
Imaging volumes in hospitals and practices previously slowed by the coronavirus pandemic continue to hold steady, acc
Franco Fontana, CEO of the Esaote Group, and Xie Yufeng, Chairman of WDM.

Franco Fontana, CEO of the Esaote Group, and Xie Yufeng, Chairman of WDM.

News | Digital Radiography (DR) | July 31, 2020
July 31, 2020 — In the thick of the COVID-19 eme
It covers every major modality, including breast imaging/mammography, fixed and portable C-arms (cath, IR/angio, hybrid, OR), CT, MRI, nuclear medicine, radiographic fluoroscopy, ultrasound and X-ray
News | Radiology Imaging | July 29, 2020
July 29, 2020 — IMV Medical Information, part of Scien...
In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
Pioneering study, which included humans, led by Tel Aviv University researchers contradicts widespread conjectures
News | Magnetic Resonance Imaging (MRI) | July 21, 2020
July 21, 2020 — Researchers at Tel Aviv University, led by Prof.

Fig. 1 The basis of high-sensitivity SPION imaging at ultra-low magnetic fields.

(A) Magnetization of 25-nm SPIONs (green), gadolinium CA (Gd-DTPA/Magnevist, blue), and water (red) as a function of magnetic field strength (B0). (B) Magnetization as a function of magnetic field strength (B0) in the ULF (<10 mT) regime for the materials shown in (A). Superparamagnetic materials, such as SPIONs, are highly magnetized even at ULF. Paramagnetic materials, such as CAs based on gadolinium, and body tissues (which typically have diamagnetic susceptibilities close to water) have absolute magnetizations that increase linearly with field strength. Curves in (A) and (B) were reproduced from data in (3253) and reflect the magnetic moment per kilogram of compound. (C) Highly magnetized SPIONs (brown) interact with nearby 1H spins in water, shortening 1H relaxation times, and causing susceptibility-based shifts in Larmor frequency. Image courtesy of Science Advances

News | Magnetic Resonance Imaging (MRI) | July 20, 2020
July 20, 2020 — Lowering the cost of magne...
Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nucle

Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.

News | PET Imaging | July 16, 2020
July 16, 2020 — Super-agers, or individuals whose cognitive skills are above the norm even at an advanced age, have b
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...