News | Neuro Imaging | August 28, 2017

fMRI Study Suggests Childhood Obesity Could Be a Psychological Disorder

Study uses fMRI to observe relationship between neurological activity and risk for obesity

fMRI Study Suggets Childhood Obesity Could Be a Psychological Disorder

Increased brain activity when viewing food cues shown in yellow, orange, and red. Decreased activity is shown in blue. Activations are present in circuits that support self-regulation and attention (frontal cortex, anterior cingulate and basal ganglia). Image courtesy of Bradley Peterson, M.D., Children’s Hospital Los Angeles.

August 28, 2017 — A team of researchers recently used functional magnetic resonance imaging (fMRI) to investigate neural responses to food cues in overweight compared with lean adolescents. The team, including senior investigator Bradley Peterson, M.D., director of the Institute for the Developing Mind at Children’s Hospital Los Angeles, observed that food stimuli activated regions of the brain associated with reward and emotion in all groups. However, adolescents at an increasing risk for obesity had progressively less neural activity in circuits of the brain that support self-regulation and attention.

“This study establishes that risk for obesity isn’t driven exclusively by the absence or presence of urges to eat high-calorie foods, but also, and perhaps most importantly, by the ability to control those urges,” said Peterson, who is also a professor at the Keck School of Medicine at the University of Southern California.

The public health implications of childhood obesity are staggering. More than half of all adolescents in the U.S. are either overweight or obese. Children of overweight parents (2/3 of adults in the U.S.) already are or are likely to become overweight. Since excess weight has been linked to a myriad of health issues shown to limit human potential and add to the skyrocketing cost of healthcare, researchers are actively seeking novel approaches to understand better the causes of obesity and alter its trajectory.  This study, recently reported in the journal NeuroImage, may offer such an approach.

“We wanted to use brain imaging to investigate a key question in obesity science: Why do some people become obese, while others don’t?” said Susan Carnell, Ph.D., assistant professor of child and adolescent psychiatry, Johns Hopkins University School of Medicine and first author on the study.

Of the 36 adolescents (ages 14 to 19 years) enrolled in the study, 10 were overweight/obese, 16 were lean but considered at high risk for obesity because they had overweight/obese mothers, and 10 were lean/low risk since they had lean mothers. The adolescents underwent brain scanning using fMRI, while they viewed words that described high-fat foods, low-fat foods and non-food items. Then they rated their appetite in response to each word stimulus. Following the activity, all participants were offered a buffet that included low- and high-calorie foods — to relate participants test responses to real-world behavior.

The investigators observed that after viewing food-related words, brain circuits that support reward and emotion were stimulated in all participants. In adolescents who were obese or who were lean but at high familial risk for obesity, they observed less activation in attention and self-regulation circuits.

Brain circuits that support attention and self-regulation showed the greatest activation in lean/low-risk adolescents, less activity in lean/high-risk participants and least activation in the overweight/obese group. Also, real world relevance mirrored fMRI findings — food intake at the buffet was greatest in the overweight/obese participants, followed by the lean/high-risk adolescents and lowest in the lean/low-risk group.

“These findings suggest that interventions designed to stimulate the self-regulatory system in adolescents may provide a new approach for treating and preventing obesity,” said Peterson.

Additional contributors to the study include Leora Benson, Johns Hopkins University School of Medicine; Ky-Yu (Virginia) Chang and Allan Geliebter, Icahn School of Medicine; and Zhishun Wang and Yuankai Huo, Columbia University Medical Center. The study was supported in part by NIDDK (K99R00DK088360, R01DK074046 and DK080153).

For more information: www.journals.elsevier.com/neuroimage

Related Content

An illustration based on simulations by Rice University engineers shows a gadolinium ion (blue) in water (red and white), with inner-sphere water -- the water most affected by the gadolinium -- highlighted. The researchers’ models of gadolinium in water show there’s room for improvement in compounds used as contrast agents in clinical magnetic resonance imaging.

An illustration based on simulations by Rice University engineers shows a gadolinium ion (blue) in water (red and white), with inner-sphere water -- the water most affected by the gadolinium -- highlighted. The researchers’ models of gadolinium in water show there’s room for improvement in compounds used as contrast agents in clinical magnetic resonance imaging. Illustration by Arjun Valiya Parambathu

News | Magnetic Resonance Imaging (MRI) | September 20, 2021
September 20, 2021 — ...
Avoiding contrast dyes for imaging tests not necessary if concerned about iodine allergy, peer-reviewed study concludes #MRI

Getty Images

News | Contrast Media Injectors | September 16, 2021
September 16, 2021 — FDB (First Databank), a leading provider of drug and medical device knowledge that helps healthc
Revised guidelines for lung cancer screening eligibility are perpetuating disparities for racial/ethnic minorities, according to a new study in Radiology.

Getty Images

News | Lung Imaging | September 15, 2021
September 15, 2021 — Revised guidelines for...
To get more flexibility and cost savings from storage, healthcare organizations are increasing their investments in the cloud
Feature | Information Technology | September 15, 2021 | By Kumar Goswami
Healthcare organizations today are storing petabytes of medical imaging data — lab slides,...
Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Feature | Radiology Imaging | September 14, 2021 | By Brendon McHugh
As with all imaging technologies, COVID-19 is expected to continue to negatively impact the market.

Courtesy of Grand View Research

Feature | Magnetic Resonance Imaging (MRI) | September 14, 2021 | By Melinda Taschetta-Millane
Plan to attend RSNA21 at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | September 13, 2021
September 13, 2021 — The Radiological Society of North America (RSNA) today announced highlights of the Technical Exh
New recommendations will help provide more reliable, reproducible results for MRI-based measurements of cartilage degeneration in the knee, helping to slow down disease and prevent progression to irreversible osteoarthritis, according to a special report published in the journal Radiology

Knee cartilage compartments with anatomic labels implemented in lateral (left side), central (middle), and medial (right side) MRI obtained with an intermediate weighted fat-saturated fast-spin-echo sequence (top row) and a spin-lattice relaxation time constant in rotating frame (T1r) magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots sequence (bottom row, T1r maps). Study was performed without administration of intravenous gadolinium-based contrast material. The lateral femur (LF)/medial femur (MF) and lateral tibia (LT)/medial tibia (MT) can be further divided into subcompartments on the basis of meniscus anatomy according to Eckstein et al. P = patella, T = trochlea.  Chalian et al, Radiology 2021 301; 7 ©RSNA 2021

News | Magnetic Resonance Imaging (MRI) | September 10, 2021
September 10, 2021 — New recommendations will help provide more reliable, reproducible results for...