News | Neuro Imaging | August 28, 2017

fMRI Study Suggests Childhood Obesity Could Be a Psychological Disorder

Study uses fMRI to observe relationship between neurological activity and risk for obesity

fMRI Study Suggets Childhood Obesity Could Be a Psychological Disorder

Increased brain activity when viewing food cues shown in yellow, orange, and red. Decreased activity is shown in blue. Activations are present in circuits that support self-regulation and attention (frontal cortex, anterior cingulate and basal ganglia). Image courtesy of Bradley Peterson, M.D., Children’s Hospital Los Angeles.

August 28, 2017 — A team of researchers recently used functional magnetic resonance imaging (fMRI) to investigate neural responses to food cues in overweight compared with lean adolescents. The team, including senior investigator Bradley Peterson, M.D., director of the Institute for the Developing Mind at Children’s Hospital Los Angeles, observed that food stimuli activated regions of the brain associated with reward and emotion in all groups. However, adolescents at an increasing risk for obesity had progressively less neural activity in circuits of the brain that support self-regulation and attention.

“This study establishes that risk for obesity isn’t driven exclusively by the absence or presence of urges to eat high-calorie foods, but also, and perhaps most importantly, by the ability to control those urges,” said Peterson, who is also a professor at the Keck School of Medicine at the University of Southern California.

The public health implications of childhood obesity are staggering. More than half of all adolescents in the U.S. are either overweight or obese. Children of overweight parents (2/3 of adults in the U.S.) already are or are likely to become overweight. Since excess weight has been linked to a myriad of health issues shown to limit human potential and add to the skyrocketing cost of healthcare, researchers are actively seeking novel approaches to understand better the causes of obesity and alter its trajectory.  This study, recently reported in the journal NeuroImage, may offer such an approach.

“We wanted to use brain imaging to investigate a key question in obesity science: Why do some people become obese, while others don’t?” said Susan Carnell, Ph.D., assistant professor of child and adolescent psychiatry, Johns Hopkins University School of Medicine and first author on the study.

Of the 36 adolescents (ages 14 to 19 years) enrolled in the study, 10 were overweight/obese, 16 were lean but considered at high risk for obesity because they had overweight/obese mothers, and 10 were lean/low risk since they had lean mothers. The adolescents underwent brain scanning using fMRI, while they viewed words that described high-fat foods, low-fat foods and non-food items. Then they rated their appetite in response to each word stimulus. Following the activity, all participants were offered a buffet that included low- and high-calorie foods — to relate participants test responses to real-world behavior.

The investigators observed that after viewing food-related words, brain circuits that support reward and emotion were stimulated in all participants. In adolescents who were obese or who were lean but at high familial risk for obesity, they observed less activation in attention and self-regulation circuits.

Brain circuits that support attention and self-regulation showed the greatest activation in lean/low-risk adolescents, less activity in lean/high-risk participants and least activation in the overweight/obese group. Also, real world relevance mirrored fMRI findings — food intake at the buffet was greatest in the overweight/obese participants, followed by the lean/high-risk adolescents and lowest in the lean/low-risk group.

“These findings suggest that interventions designed to stimulate the self-regulatory system in adolescents may provide a new approach for treating and preventing obesity,” said Peterson.

Additional contributors to the study include Leora Benson, Johns Hopkins University School of Medicine; Ky-Yu (Virginia) Chang and Allan Geliebter, Icahn School of Medicine; and Zhishun Wang and Yuankai Huo, Columbia University Medical Center. The study was supported in part by NIDDK (K99R00DK088360, R01DK074046 and DK080153).

For more information: www.journals.elsevier.com/neuroimage

Related Content

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017.

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least one year prior to the mammogram. The algorithm was trained on 9,611 mammograms. Image courtesy of Radiology.

Feature | Artificial Intelligence | July 19, 2019 | Michal Chorev
Breast cancer is the global leading cause of cancer-related deaths in women, and the most commonly diagnosed cancer...
Two brain metastases from primary lung cancer are contrast enhanced in the brain of a 61-year-old male. Speakers at AHRA 2019 will state that ProHance and other macrocyclic MR agents present a very low risk to patients. Images courtesy of Bracco

Two brain metastases from primary lung cancer are contrast enhanced in the brain of a 61-year-old male. Speakers at AHRA 2019 will state that ProHance and other macrocyclic MR agents present a very low risk to patients. Images courtesy of Bracco

Feature | Contrast Media | July 18, 2019 | By Greg Freiherr
Macrocyclic contrast agents have the best safety profile of all the magnetic resonance (MR) contrast media that are n
AAPM 2019 Features More Than 40 Presentations on ViewRay's MRIdian MRI-guided Radiotherapy
News | Image Guided Radiation Therapy (IGRT) | July 16, 2019
ViewRay Inc. announced that the company's MRIdian System is the focus of more than 40 abstracts selected by the...
FDA Approves Bayer's Gadavist Contrast for Cardiac MRI in Adult Coronary Artery Disease Patients
Technology | Contrast Media | July 15, 2019
The U.S. Food and Drug Administration (FDA) has approved Gadavist injection for use in cardiac magnetic resonance...
Insightec's Exablate Neuro Approved With GE Signa Premier MRI in U.S. and Europe
News | Focused Ultrasound Therapy | July 10, 2019
GE Healthcare and Insightec announced U.S. Food and Drug Administration (FDA) approval and CE mark for Insightec’s...
Delta T1 Maps Provide Quantitative, Automated Solution to Assess Brain Tumor Burden
News | Neuro Imaging | July 05, 2019
Imaging Biometrics LLC (IB) a subsidiary of IQ-AI Ltd., is highlighting a recently published study in the American...
Medic Vision Wins Japanese PMDA Clearance for iQMR Image Reconstruction Solution
News | Magnetic Resonance Imaging (MRI) | July 05, 2019
Medic Vision Imaging Solutions announced that its 3-D iterative image reconstruction technology for shortening magnetic...
Bay Labs Announces New Echocardiography Guidance Software Data at ASE 2019 Scientific Sessions
News | Cardiovascular Ultrasound | June 20, 2019
Bay Labs announced that new data on the company’s first-of-its-kind deep learning investigational guidance software...