News | Neuro Imaging | June 25, 2018

Children with Kidney Disease Show Blood Flow Changes in Brain

Arterial spin labeling MRI provides valuable tool in characterizing cerebrovascular function in chronic kidney disease

Children with Kidney Disease Show Blood Flow Changes in Brain

June 25, 2018 — Blood flow changes in the brains of children, adolescents and young adults with chronic kidney disease may explain why many face a higher risk of cognitive impairment, according to a study published online in the journal Radiology.

Prior research has linked chronic kidney disease — a condition characterized by the loss of kidney function over time — with lesions in the brain’s signal-carrying white matter and deficits in cognitive performance. While chronic kidney disease in adults is frequently associated with age-related disorders such as hypertension and diabetes, the disease in childhood often occurs congenitally, yet still affects brain development and cognitive function.

“It’s not clear if the brain problems from kidney disease seen in adults are secondary to the hypertension produced by the disease,” said coauthor John A. Detre, M.D., professor of neurology and radiology, director of the Center for Functional Neuroimaging in Radiology and vice chair for research in neurology at the Perelman School of Medicine at the University of Pennsylvania in Philadelphia. “In our study, we wanted to look at patients with early kidney disease, before they’ve experienced decades of high blood pressure. In doing this, we could separate the kidney disease effects from those of chronic high blood pressure.”

Detre and colleagues assessed blood flow in the brains of 73 pediatric kidney disease patients, average age just under 16 years, and 57 similarly aged control participants. The researchers used arterial spin labeling, a magnetic resonance imaging (MRI) technique that can noninvasively quantify blood flow in the brain.

Patients with kidney disease showed higher cerebral blood flow compared with controls in certain brain regions — a surprising finding, considering that decreased cognitive performance is generally associated with decreased blood flow in the brain, such as in aging and dementia. There are a couple of possible reasons for this unusual phenomenon, Detre said.

“It may indicate compensatory hyperactivity, in which the brain regions are working extra hard to maintain performance,” he said. “Another possibility is that there’s a disturbance in the regulation of blood flow in these patients.”

White matter cerebral blood flow and blood pressure were also correlated, suggesting that kidney disease patients have problems with cerebrovascular autoregulation, the process that controls blood pressure in the brain. This type of dysfunction could potentially lead to white matter injury, according to Detre.

“Chronic kidney disease appears to affect brain physiology and function even early in the disease,” he said. “This study gives us clues about what changes in brain physiology might underlie cognitive changes.”

Among those changes were differences in blood flow between patients and controls in areas of the brain that correlated with cognitive problems in the patients. Compared with controls, kidney disease patients had cerebral blood flow differences in the default-mode network, the network of brain regions active when a person is not focused on a particular task. Patients with low executive function, or skills related to planning, organizing and paying attention, had significant differences in cerebral blood flow compared with controls.

The findings point to cerebral blood flow measurements with arterial spin labeling as a potentially valuable tool in characterizing cerebrovascular function in chronic kidney disease. This is an important area of research given the associations between kidney disease and neurological function, and the significantly increased risk for transient ischemic attack and stroke in even mild chronic kidney patients.

“Cerebral blood flow is a critically important physiological parameter that you can measure in just a few minutes with arterial spin labeling,” Detre said. “This technique provides a noninvasive way of quantifying cerebral blood flow that doesn’t require use of contrast agent, which is contraindicated in patients with kidney dysfunction.”

For more information: www.pubs.rsna.org/journal/radiology

Reference

Liu H., Hartung E.A., Jawad A.F., et al. "Regional Cerebral Blood Flow in Children and Young Adults with Chronic Kidney Disease." Radiology, June 12, 2018. https://doi.org/10.1148/radiol.2018171339

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
SmartCurve technology, a revolutionary breast imaging technology designed specifically for the curvature of the female breast to provide every woman with a more comfortable and accurate mammogram.
News | Mammography | September 14, 2018
Solis Mammography declared September Breast Wellness Month a
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
At RSNA 2018, radiology professionals will discover intelligent radiography powered by MUSICA, at Agfa's booth.

At RSNA 2018, radiology professionals will discover intelligent radiography powered by MUSICA, at Agfa's booth.

News | Digital Radiography (DR) | September 13, 2018
At RSNA 2018, radiology professionals will discover intelligent
Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Contrast Media | September 12, 2018
In February 2018, a workshop was held at the National Institutes of Health (NIH) in Bethesda, Maryland, to explore co
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Whitepapers | Radiation Dose Management | September 10, 2018
It’s crucial for medical professionals to understand the radiation risk/ benefit balance of diagnostic imaging system