News | Neuro Imaging | December 07, 2018

Youth Football Changes Nerve Fibers in Brain

MRI study of adolescent players reveals changes in the corpus callosum

Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

December 7, 2018 — Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football players, according to a new study. Study results were presented at the 2018 annual meeting of the Radiological Society of North America (RSNA), Nov. 25-30 in Chicago.

Football has been the subject of much scrutiny in recent years due to growing concerns over the long-term consequences of repetitive head impacts. Players who show signs of concussion are typically removed from games, but many hits to the head are subconcussive — or below the threshold of a concussion — and, therefore, do not cause any immediate symptoms. There is rising concern that youth football players who experience these collisions in practices and games may be vulnerable to their effects.

"The years from age 9 to 12 are very important when it comes to brain development," said study lead author Jeongchul Kim, Ph.D., from Wake Forest School of Medicine in Winston-Salem, N.C. "The functional regions of the brain are starting to integrate with one another, and players exposed to repetitive brain injuries, even if the amount of impact is small, could be at risk."

Kim and colleagues studied the results of these collisions on youth football players using a novel MRI method that looks at the strain evident on white matter tracts — the bundles of nerve fibers that carry information between different areas of the brain.

"The focus here was on deformations of these fiber bundles," Kim said. "Changes from collisions might cause elongation or contraction of these bundles."

Twenty-six male youth football players, average age 12, underwent MRI studies before and approximately three months after the season was over. For comparison, 22 similarly aged boys who did not participate in contact sports had MRIs on the same schedule.

The MRI results showed the football players developed changes in the corpus callosum, a critically important band of nerve fibers that connects the two halves of the brain. The primary role of the corpus callosum is to integrate cognitive, motor and sensory functions between the two sides of the brain.

There were signs of greater axial strain (contraction) in some parts of the corpus callosum, and indications of radial strain (expansion) in other parts.

"The body of the corpus callosum is a unique structure that's somewhat like a bridge connecting the left and right hemispheres of brain," Kim said. "When it's subjected to external forces, some areas will contract and others will expand, just like when a bridge is twisting in the wind."

The results suggest repetitive subconcussive head impacts associated with participation in youth contact sports could lead to changes in the shape of the corpus callosum during this critical time of brain development. Kim cautioned, however, that more evidence is needed to confirm the findings. His group intends to continue studying the players, when possible, to see if any additional deformation occurs.

The ultimate goal of the research, Kim said, is to provide guidelines for safe football play. MRI may have a role in that process by helping to determine if and when an athlete is able to return to play after a head injury. Positron emission tomography (PET), an imaging technique that can detect signs of inflammation in the brain, is also potentially useful in this regard, according to Kim.

"It's best to detect changes at the earliest possible time," he said.

For more information: www.rsna.org

Related Content

New Study Redefines Therapeutic Dose Guidelines for Non-Small Cell Lung Cancer
News | Lung Cancer | April 23, 2019
Non-small cell lung cancer is a common cancer for both men and women. Many people who are diagnosed with this type of...
Konica Minolta Dynamic Digital Radiography Receives FDA Clearance

With DDR, orthopedists and MSK specialists can acquire a full view of the MSK system in the supine and prone positions to view changes in the bone and articulations throughout the full range of motion. Image courtesy of Konica Minolta Healthcare Americas.

Technology | Digital Radiography (DR) | April 23, 2019
Konica Minolta Healthcare Americas Inc. announced that its Dynamic Digital Radiography (DDR) technology, introduced at...
Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index

Fig. 1: Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index. (Agarwal et al, Red Journal, 2019) Credit: Elsevier

News | Radiation Therapy | April 22, 2019
April 22, 2019 — A new study finds wide state
Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
FDA Clears GE's Deep Learning Image Reconstruction Engine
Technology | Computed Tomography (CT) | April 19, 2019
GE Healthcare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) of its Deep Learning Image...
Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
iCAD Appoints Stacey Stevens as President
News | Radiology Business | April 16, 2019
iCAD Inc. recently announced that Stacey Stevens has been named president. As president, Stevens will have expanded...
compressed breast during mammography.
360 Photos | 360 View Photos | April 16, 2019
A 360 view of a simulated breast compression for a...