Cardiac Imaging

The cardiac imaging channel includes the modalities of computed tomography (CT), cardiac ultrasound (echocardiography), magnetic resonance imaging (MRI), nuclear imaging (PET and SPECT), and angiography.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Pediatric Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic resonance imaging (MRI) scan used in people with heart disease could help...
RapidAI acquires comprehensive aneurysm management innovator and expands scope to include aneurysm, extending its leadership in cerebrovascular imaging
News | Artificial Intelligence | June 12, 2020
June 12, 2020 — RapidAI announced the acquisition of EndoVantage, developer of the Find, Track and Treat comprehensive...
Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to an...
The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

News | Coronavirus (COVID-19) | May 26, 2020
May 26, 2020  — Philips Healthcare recently received 510(k) clearance from the U.S. Food and Drug Administration (FDA)...
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a...
Videos | Coronavirus (COVID-19) | May 07, 2020
Interview with Geoffrey Rose, M.D., president of Sanger Heart and Vascular Institute with Atrium Health, in Charlotte,...
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch.

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Pulmonary CT angiography of a 68 year old male. The CT scan was obtained 10 days after the onset of COVID-19 symptoms and on the day the patient was transferred to the intensive care unit.

Figure 2: Pulmonary CT angiography of a 68 year old male. The CT scan was obtained 10 days after the onset of COVID-19 symptoms and on the day the patient was transferred to the intensive care unit. Axial CT images (lung windows) (a,b) show peripheral ground-glass opacities (arrow) associated with areas of consolidation in dependent portions of the lung (arrowheads). Interlobular reticulations, bronchiectasis (black arrow) and lung architectural distortion are present. Involvement of the lung volume was estimated to be between 25% and 50%. Coronal CT reformations (mediastinum windows) (c,d) show bilateral lobar and segmental pulmonary embolism (black arrows). Courtesy of RSNA

News | Coronavirus (COVID-19) | April 23, 2020
April 23, 2020 — A special report published in the journal Radiology outlines prevention, diagnosis and treatment of...
Videos | Coronavirus (COVID-19) | April 18, 2020
Stephen Bloom, M.D., FASNC, director of noninvasive cardiology (cardiac CT, nuclear cardiology and echocardiography) at...
Two examples of CT myocardial perfusion (CTP) imaging assessment software. Canon is on the left and GE Healthcare is on the right. Both of these technologies have been around for a few years, but there have been an increasing amount of clinical data from studies showing the accuracy of the technology compared to nuclear imaging, the current stand of care for myocardial perfusion imaging, and cardiac MRI. #SCCT #perfusionimaging 

Two examples of CT myocardial perfusion (CTP) imaging assessment software. Canon is on the left and GE Healthcare is on the right. Both of these technologies have been around for a few years, but there have been an increasing amount of clinical data from studies showing the accuracy of the technology compared to nuclear imaging, the current stand of care for myocardial perfusion imaging, and cardiac MRI.

News | Computed Tomography (CT) | March 16, 2020
March 16, 2020 — The Society of Cardiovascular Computed Tomography (SCCT) released a new expert consensus document on...
Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

News | Computed Tomography (CT) | March 06, 2020
March 6, 2020 — Researchers at the National Institutes of Health and the University of Wisconsin have demonstrated that...
The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

News | Artificial Intelligence | February 13, 2020
February 13, 2020 — The U.S. Food and Drug Administration (FDA) cleared software to assist medical professionals in the...
Fujifilm Synapse
News | Enterprise Imaging | January 30, 2020
January 30, 2020 — Fujifilm Corporation announced its plan to launch a Systems Integration (SI) business, operating...
Videos | Magnetic Resonance Imaging (MRI) | January 06, 2020
Karen Ordovas, M.D., MAS, professor of radiology and cardiology at the University of California San Francisco (UCFS)...
Videos | Magnetic Resonance Imaging (MRI) | December 20, 2019
James Carr, M.D., chair of the Department of Radiology, Northwestern University, and incoming 2020 President of the ...
Videos | Radiation Dose Management | December 19, 2019
Mahadevappa Mahesh, Ph.D., chief of medical physicist and professor of radiology and medical physics, Johns Hopkins...
Videos | Ultrasound Transesophageal echo (TEE) | December 19, 2019
This is an example of an augmented reality (AR) training system for transesophageal echo (TEE) created by the...
DiA’s novel solution leverages AI to transform the way clinicians capture and analyze ultrasound images
News | Ultrasound Imaging | December 09, 2019
December 9, 2019 —  DiA Imaging Analysis Ltd., an IBM Alpha Zone Accelerator Alumni Startup, announces a collaboration...
 CAE Healthcare will showcase its mixed reality training solutions for practicing physicians and medical imaging companies for the first time at the Radiological Society of North America (RSNA) 2019 meeting. With technology platforms that integrate modeled human physiology into immersive, augmented reality environments, CAE Healthcare partners with vendors to deliver risk-free training solutions that meet the needs of physicians and equipment providers. #RSNA19 #RSNA2019
News | Virtual and Augmented Reality | November 27, 2019
November 27, 2019 — CAE Healthcare will showcase its mixed reality training solutions for practicing physicians and...
EchoGo uses artificial intelligence (AI) to calculate cardiac ultrasound left ventricular ejection fraction (EF), the most frequently used measurement of heart function, left ventricular volumes (LV) and, for the first time for an AI application, automated cardiac strain.

EchoGo uses artificial intelligence (AI) to calculate cardiac ultrasound left ventricular ejection fraction (EF), the most frequently used measurement of heart function, left ventricular volumes (LV) and, for the first time for an AI application, automated cardiac strain.

News | Cardiovascular Ultrasound | November 14, 2019
November 14, 2019 — Ultromics has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its ...