News | Magnetic Resonance Imaging (MRI) | December 30, 2015

Wired for Gaming: Brain Differences in Compulsive Video Game Players

Brain scans suggest there are new connections: some potentially beneficial, others harmful

video gamer

Brain scans from nearly 200 adolescent boys provide evidence that the brains of compulsive video game players are wired differently. Chronic video game play is associated with hyperconnectivity between several pairs of brain networks. Some of the changes are predicted to help game players respond to new information. Other changes are associated with distractibility and poor impulse control. The research, a collaboration between the University of Utah School of Medicine, and Chung-Ang University in South Korea, was published online in Addiction Biology on Dec. 22, 2015.

“Most of the differences we see could be considered beneficial. However the good changes could be inseparable from problems that come with them,” said senior author Jeffrey Anderson, M.D., Ph.D., associate professor of neuroradiology at the University of Utah School of Medicine.

Those with Internet gaming disorder are obsessed with video games, often to the extent that they give up eating and sleeping to play. This study reports that in adolescent boys with the disorder, certain brain networks that process vision or hearing are more likely to have enhanced coordination to the so-called salience network. The job of the salience network is to focus attention on important events, poising that person to take action. In a video game, the enhanced coordination could help a gamer to react more quickly to the rush of an oncoming fighter. And in life, to a ball darting in front of a car, or an unfamiliar voice in a crowded room.

“Hyperconnectivity between these brain networks could lead to a more robust ability to direct attention toward targets, and to recognize novel information in the environment,” said Anderson. “The changes could essentially help someone to think more efficiently.” One of the next steps will be to directly determine whether the boys with these brain differences do better on performance tests.

More troublesome is an increased coordination between two brain regions, the dorsolateral prefrontal cortex and temporoparietal junction, a change also seen in patients with neuropsychiatric conditions such as schizophrenia, Down’s syndrome, and autism. Hyperconnectivity between the two regions is also observed in people with poor impulse control. “Having these networks be too connected may increase distractibility,” said Anderson. At this point it’s not known whether persistent video gaming causes rewiring of the brain, or whether people who are wired differently are drawn to video games.

According to Doug Hyun Han, M.D., Ph.D., professor at Chung-Ang University School of Medicine and adjunct associate professor at the University of Utah School of Medicine, this research is the largest, most comprehensive investigation to date of brain differences in compulsive video game players. Study participants were from South Korea, where video game playing is a popular social activity, much more than in the United States. The Korean government supports his research with the goal of finding ways to identify and treat addicts.

Researchers performed magnetic resonance imaging on 106 boys between the ages of 10 to 19 who were seeking treatment for Internet gaming disorder, a psychological condition listed in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as warranting further research. The brain scans were compared to those from 80 boys without the disorder, and analyzed for regions that were activated simultaneously while participants were at rest, a measure of functional connectivity.

The team analyzed activity in 25 pairs of brain regions, 300 combinations in all. Specifically, boys with Internet gaming disorder had statistically significant, functional connections between the following pairs of brain regions:

  • Auditory cortex (hearing) - motor cortex (movement)
  • Auditory cortex (hearing) - supplementary motor cortices (movement)
  • Auditory cortex (hearing) - anterior cingulate (salience network)
  • Frontal eye field (vision) - anterior cingulate (salience network)
  • Frontal eye field (vision) - anterior insula (salience network)
  • Dorsolateral prefrontal cortex - temporoparietal junction

“Brain connectivity and psychiatric comorbidity in adolescents with Internet gaming disorder” was published in Addiction Biology online on December 22, 2015. In addition to Anderson and Han, the authors are Perry Renshaw from the University of Utah School of Medicine, and Sun Mi Kim and Sujin Bae from Chung-Ang University. The research was supported by a grant from the Korea Creative Content Agency

For more information: http://healthsciences.utah.edu/

Related Content

California Protons Cancer Therapy Center Begins Breast Cancer Study Enrollment
News | Proton Therapy | April 25, 2019
California Protons Cancer Therapy Center announced two major efforts representing significant steps forward in breast...
Women With Coronary Artery Wall Thickness at Risk for Heart Disease
News | Cardiac Imaging | April 25, 2019
The thickness of the coronary artery wall as measured by magnetic resonance imaging (MRI) is an independent marker for...
New Study Redefines Therapeutic Dose Guidelines for Non-Small Cell Lung Cancer
News | Lung Cancer | April 23, 2019
Non-small cell lung cancer is a common cancer for both men and women. Many people who are diagnosed with this type of...
Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index

Fig. 1: Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index. (Agarwal et al, Red Journal, 2019) Credit: Elsevier

News | Radiation Therapy | April 22, 2019
April 22, 2019 — A new study finds wide state
Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here

Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here. The technology is favored largely for its ability to precisely target tumors while sparing healthy tissue.

Feature | Radiation Oncology | April 11, 2019 | By Jeff Zagoudis
Brain tumors are some of the most complicated forms of cancer to treat due to their extremely sensitive location.
Deep Lens Closes Series A Financing for Digital AI Pathology Platform
News | Digital Pathology | April 09, 2019
Digital pathology company Deep Lens Inc. announced the closing of a $14 million Series A financing that will further...