News | PET Imaging | July 10, 2021

Total-body PET Imaging Exceeds Industry Standards

A performance evaluation of the uEXPLORER total-body PET/CT scanner showed that it exhibits ultra-high sensitivity that supports excellent spatial resolution and image quality. Given the long axial field of view (AFOV) of the uEXPLORER, study authors have proposed new, extended measurements for phantoms to characterize total-body PET imaging more appropriately. This research was published in the June issue of The Journal of Nuclear Medicine.

Human imaging examples of performance of uEXPLORER total-body PET scanner. (A) Axial slice from 18F-fluciclovine PET image (right), with corresponding fused image (middle) and CT image (left), of 68-y-old patient with castration-resistant metastatic prostate cancer, demonstrating clear visualization of 18F-flucicovine accumulation within 2.5-mm-diameter pulmonary nodule. (B) Maximum-intensity projection of representative clinical oncology 18F-FDG PET scan reconstructed with 20-, 5-, and 2.5-min durations, of 59-y-old patient with lung cancer. Images show primary tumor in left lower lobe of lung (dashed circle), with multiple variable-sized (0.8-6 cm) hilar, mediastinal, and lower esophageal nodal metastases (arrows) and ~1-cm 18FFDG-avid left adrenal nodule (arrowhead), which is visualized for all scan durations. Image created by Y. Abdelhafez and B.A. Spencer, EXPLORER Molecular Imaging Center, UC Davis, Sacramento, CA

July 10, 2021 — A performance evaluation of the uEXPLORER total-body PET/CT scanner showed that it exhibits ultra-high sensitivity that supports excellent spatial resolution and image quality. Given the long axial field of view (AFOV) of the uEXPLORER, study authors have proposed new, extended measurements for phantoms to characterize total-body PET imaging more appropriately. This research was published in the June issue of The Journal of Nuclear Medicine.

uEXPLORER is the world's first commercially available total-body PET scanner. The scanner has an AFOV of 194 cm, which allows PET data collection from the entire human body simultaneously and greatly increases PET scanner sensitivity.

Characterization of positron emission tomography (PET) scanners has commonly followed the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard, which defines a set of experiments and analyses using standardized imaging phantoms. This permits valid comparisons between different PET systems. In this study, researchers utilized phantoms to assess the uEXPLORER's sensitivity, count-rate performance, time-of-flight resolution, spatial resolution, image quality and accuracy of corrections based on NEMA NU 2-2018 standards. Human studies were also conducted for further characterization.

"Our results with the uEXPLORER PET/CT system show a major gain in sensitivity compared to conventional PET systems, approximately 15 to 68-fold higher than others," noted Eric Berg, Ph.D., project scientist in biomedical engineering at the University of California, Davis. "We documented excellent spatial resolution that is well supported by the increased image signal to noise ratio. Additionally, post-reconstruction image smoothing was unnecessary in both phantom and human imaging studies."

Although the NEMA NU 2-2018 measurements were performed in this characterization of the uEXPLORER scanner, these standards are defined only for PET scanners with an AFOV of no more than 65 cm and are not well suited for long-AFOV scanners, like the 194-cm-long uEXPLORER. As part of the study, researchers devised a set of additional informative phantom measurements that to evaluate uEXPLORER more accurately for total-body PET imaging.

"This work provides a benchmark for testing the performance of long axial field of view scanners, which are set to revolutionize the capabilities of PET scanning. Understanding their performance is essential for improving the quality of scans, scanning more quickly, scanning with lower activity, or scanning much later after radiotracer injection," said Ramsey D. Badawi, Ph.D., vice-chair for research in the department of radiology at the University of California, Davis.

He continued, "These capabilities have the potential to significantly improve patient care in all the areas where PET is currently used, and in addition in new areas, such as autoimmune disease, metabolic disease and other chronic conditions where historically dose considerations have excluded it's use."

For more information: www.snmmi.org

For Additional SNMMI21 Content:

SNMMI Channel

PSMA PET/CT Can Change Management in Recurrent Prostate Cancer

PSMA PET/CT Can Change Management in Recurrent Prostate Cancer

Total-body Dynamic PET Successfully Detects Metastatic Cancer

New PET Radiotracer Proven Safe in Imaging Malignant Brain Tumors

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

New PET/MRI Approach Pinpoints Chronic Pain Location, Alters Management

FDA Approves First Commercially Available PSMA PET Imaging Agent for Prostate Cancer

Related Content

New recommendations will help provide more reliable, reproducible results for MRI-based measurements of cartilage degeneration in the knee, helping to slow down disease and prevent progression to irreversible osteoarthritis, according to a special report published in the journal Radiology

Knee cartilage compartments with anatomic labels implemented in lateral (left side), central (middle), and medial (right side) MRI obtained with an intermediate weighted fat-saturated fast-spin-echo sequence (top row) and a spin-lattice relaxation time constant in rotating frame (T1r) magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots sequence (bottom row, T1r maps). Study was performed without administration of intravenous gadolinium-based contrast material. The lateral femur (LF)/medial femur (MF) and lateral tibia (LT)/medial tibia (MT) can be further divided into subcompartments on the basis of meniscus anatomy according to Eckstein et al. P = patella, T = trochlea.  Chalian et al, Radiology 2021 301; 7 ©RSNA 2021

News | Magnetic Resonance Imaging (MRI) | September 10, 2021
September 10, 2021 — New recommendations will help provide more reliable, reproducible results for...
This certification, which covers Agfa HealthCare’s Class IIa Enterprise Imaging and XERO Viewer solutions, ensures that Agfa HealthCare can continue to deliver to customers innovative solutions that meet their real challenges and address their needs and requirements.
News | Enterprise Imaging | September 09, 2021
September 9, 2021 — Agfa HealthCare is proud to be one of the first companies to receive the new European Medical Dev
Insignia Medical Systems, a leading UK-based enterprise imaging provider, announced it has been acquired by Intelerad Medical Systems, a global leader in medical image management solutions. The deal signals an important step in expanding next-generation imaging solutions and resources to help modernise hospital trusts across the UK. 

Getty Images

News | Radiology Business | September 08, 2021
September 8, 2021 — Insignia Medical Systems, a leadi

Image of a STING protein, courtesy of UCLA Jonsson Comprehensive Cancer Center

News | PET Imaging | September 08, 2021
September 8, 2021 — A new study from scientists at the UCLA Jonsso...
An artificial intelligence (AI) program can spot signs of lung cancer on computed tomography (CT) scans a year before they can be diagnosed with existing methods, according to research presented at the European Respiratory Society International Congress.

Diagram showing details of the lung screening experiment. Image courtesy of the European Respiratory Society/Benoit Audelan

News | Artificial Intelligence | September 08, 2021
September 8, 2021 — An artificial intell...
62-Year-Old Woman Who Underwent Hysterectomy for Uterine Cancer: Sagittal chest CT images demonstrate measurement of right (A) and left (B) lung length at hilar level from apex to diaphragmatic dome. Right lung length was 20.1 cm for reader 1 and 20.0 cm for reader 2; left lung length was 21.7 cm for reader 1 and 21.3 cm for reader 2. Patient did not require postoperative mechanical ventilation.

62-Year-Old Woman Who Underwent Hysterectomy for Uterine Cancer: Sagittal chest CT images demonstrate measurement of right (A) and left (B) lung length at hilar level from apex to diaphragmatic dome. Right lung length was 20.1 cm for reader 1 and 20.0 cm for reader 2; left lung length was 21.7 cm for reader 1 and 21.3 cm for reader 2. Patient did not require postoperative mechanical ventilation.

News | Computed Tomography (CT) | September 07, 2021
Neuroscientists at the Beckman Institute for Advanced Science and Technology carried out comparative studies to determine safe operating conditions for multiband EEG-fMRI imaging while maintaining acceptable data quality standards

A team of psychologists and neuroscientists at the Beckman Institute for Advanced Science and Technology including Sepideh Sadaghiani, Maximillian Egan, Ryan Larsen, and Brad Sutton published a study to establish safe use of electroencephalography coupled with newly developed functional MRI sequences. Image courtesy of the Beckman Institute for Advanced Science and Technology.

News | Magnetic Resonance Imaging (MRI) | September 07, 2021
September 7, 2021 — A team of psychologists and neuroscientists at the Beckman Institute for Advanced Science and Tec
Gallium-68 from GalliaPharm is used for the preparation of diagnostic imaging drugs in Positron Emission Tomography (PET).
News | PET Imaging | September 03, 2021
September 3, 2021 — Eckert & Ziegler Radiopharma GmbH has successfully submitted an amendment to their Drug Maste