News | PET-CT | July 15, 2020

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

July 15, 2020 — Targeted radionuclide therapy has been found to create a favorable tumor microenvironment in prostate cancer that improves the effectiveness of immunotherapies. The research, presented at the Society of Nuclear Medicine and Molecular Imaging's 2020 Annual Meeting, shows that immunomodulation can be achieved with relatively low radiation dose that does not affect the normal immune system.

Due to a significantly immunosuppressive tumor microenvironment, immunotherapy has had limited success in the treatment of prostate cancer. External beam radiotherapy, which has been shown to remodel the tumor microenvironment of irradiated tumors to make them more immune-susceptible even at low radiation doses, is limited to the localized disease setting.

"Understanding this treatment dynamic, our goal in this study was to demonstrate that systemically delivered targeted radionuclide therapy provides beneficial immunomodulatory effects that may enhance the response of prostate cancer to immunotherapies," said Reinier Hernandez, Ph.D., assistant professor of medical physics and radiology at the University of Wisconsin-Madison in Madison Wisconsin.

In the study, male mice bearing syngeneic prostate tumor allografts were administered 86Y-NM600 and received positron emission tomography/computed tomography (PET/CT) scans at three, 24, 48 and 72 hours after injection. Radiotracer uptake was analyzed in tumors and in healthy tissues, which allowed researchers to estimate the dosimetry for the targeted radionuclide therapy 90Y-NM600.

Groups of mice were administered either a high or low dose of 90Y-NM600, and tumor growth and survival were monitored for 60 days. A separate group of mice received the same 90Y-NM600 doses and were euthanized to analyze the immunological effects (flow cytometry, immunohistochemistry and Luminex cytokine profiling) of the radionuclide therapy on the tumor microenvironment and lymphoid tissues.

Data from PET/CT imaging revealed that 90Y-NM600 immunomodulates the tumor microenvironment of prostate tumors by modifying tumor-infiltrating lymphocyte populations, upregulating checkpoint molecules, and promoting the release of pro-inflammatory cytokines. 90Y-NM600's pro-inflammatory effects on the tumor microenvironment were found to be elicited at relatively low radiation doses without incurring systemic toxicity.

"Our results provide a rationale for combining targeted radionuclide therapy with immunotherapies, which, so far, have proven ineffective in prostate cancer. Improving immunotherapy in prostate cancer could bring about a potentially curative treatment alternative for advanced-stage patients. We are actively working to advance the immunomodulation concept into Phase I clinical trials," stated Hernandez.

The study also presents a paradigm change in targeted radionuclide therapy, where the maximum tolerable dose may not always be the most beneficial to patients. "A key finding of our work is that immunomodulation is best achieved with a relatively low radiation dose to the tumor which does not affect the normal immune system," Hernandez noted. "As high radiation doses to normal lymphoid organs can negate the benefits of immunomodulation, estimating the radiation doses imparted to the tumor and normal tissues prospectively by using patient-specific image-based dosimetry techniques is critical. This means that, essentially, a theranostic approach must be implemented."

Abstract 36. "Low-dose TRT reshapes the microenvironment of prostate tumors to potentiate response to immunotherapy," Reinier Hernandez, Hemanth Potluri, Eduardo Aluicio-Sarduy, Joseph Grudzinski, Christopher Massey, Christopher Zahm, Jonathan Engle, Douglas McNeel and Jamey Weichert, University of Wisconsin-Madison, Madison, Wisconsin. SNMMI's 67th Annual Meeting, July 11-14, 2020.

For more information: www.snmmi.org

Related SNMMI20 Content:

SNMMI Channel

PSMA PET/CT Can Change Management in Recurrent Prostate Cancer

Total-body Dynamic PET Successfully Detects Metastatic Cancer

New PET Radiotracer Proven Safe in Imaging Malignant Brain Tumors

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

New PET/MRI Approach Pinpoints Chronic Pain Location, Alters Management

Related Content

"Initial report of a randomized trial comparing conventional- vs conventional plus fluciclovine (18F) PET/CT imaging-guided post-prostatectomy radiotherapy for prostate cancer" was presented by Ashesh Jani, M.D., Winship Cancer Institute of Emory University, at ASTRO20
News | PET Imaging | October 26, 2020
October 26, 2020 — Adding the advanced PET radiotracer...
Treating lung cancer patients with proton therapy may help reduce the risk of radiation-induced heart diseases, suggests a new study from Penn Medicine. In a retrospective trial of more than 200 patients, mini-strokes were significantly less common among patients who underwent proton therapy versus conventional photon-based radiation therapy. Proton therapy patients also experienced fewer heart attacks.
News | Proton Therapy | October 25, 2020
October 25, 2020 — Treating lung cancer patients with prot...
An example of a HeartFlow FFR-CT image showing the blood flow through what looked like a significant blockage on CT angiography alone, actually was not flow-limiting based on computational fluid dynamics. Use of the technology was supposed to reduce the number of diagnostic catheterizations in the FORECAST trial, but the costs of FFR-CT were not offset enough to show cost savings.

An example of a HeartFlow FFR-CT image showing the blood flow through what looked like a significant blockage on CT angiography alone, actually was not flow-limiting based on computational fluid dynamics. Use of the technology was supposed to reduce the number of diagnostic catheterizations in the FORECAST trial, but the costs of FFR-CT were not offset enough to show cost savings.

Feature | CT Angiography (CTA) | October 23, 2020
October 22, 2020 – In the FORECAST randomized clinical trial, the use of ...
Be sure to register for the American Society for Radiation Oncology's (ASTRO) 62nd Annual Meeting, to be held October 24-28, 2020, via an interactive virtual platform. The meeting, Global Oncology: Radiation Therapy in a Changing World, will feature reports from the latest clinical trials; panels on global oncology, health disparities and the novel coronavirus; and an immersive attendee experience in a virtual convention center.
News | ASTRO | October 23, 2020
October 23, 2020 — Be sure to ...
This illustration show the complexity of the data obtained from one single patient with moderate/severe traumatic brain injury. Different imaging approaches and techniques have their own unique sensitivity in assessing different aspects of neuroanatomy and neuropathology. What can be seen on images also changes with time since injury. Data from comprehensive clinical and functional assessments using a range of other tools is also important for evaluating patient outcome. Through data harmonization and large

This illustration show the complexity of the data obtained from one single patient with moderate/severe traumatic brain injury. Different imaging approaches and techniques have their own unique sensitivity in assessing different aspects of neuroanatomy and neuropathology. What can be seen on images also changes with time since injury. Data from comprehensive clinical and functional assessments using a range of other tools is also important for evaluating patient outcome. Through data harmonization and large-scale analyses of data combined across multiple research sites, the ENIGMA Brain Injury will develop and test methods and procedures for making sense of the complexity in this data. Images courtesy of Olsen et al., Brain Imaging and Behavior, 2020

News | Magnetic Resonance Imaging (MRI) | October 23, 2020
October 23, 2020 — Trau...
The fMRI hyperscanning environment.

(A) The fMRI hyperscanning environment. The clinician (1) and patient (2) were positioned in two different 3T MRI scanners. An audio-video link enabled online communication between the two scanners (3), and video images were used to extract frame-by-frame facial expression metrics. During simultaneous acquisition of blood oxygen level–dependent (BOLD)–fMRI data, the clinician used a button box (4) to apply electroacupuncture (EA) treatment (real/sham, double-blind) to the patient (5) to alleviate evoked pressure pain to the leg (6; Hokanson cuff inflation). Pain and affect related to the treatment were rated after each trial. (B) Study overview. After an initial behavioral visit, each individual participated in a Clinical-Interaction (hyperscan preceded by a clinical intake) and No-Interaction condition (hyperscan without a preceding intake), in a counterbalanced order, with two different partners. (C) Experimental protocol. Each hyperscan was composed of 12 repeated trials (four verum EA, four sham EA, and four no treatment) in a pseudo-randomized order. After a resting period (far left), both participants were shown a visual cue to indicate whether the next pain stimulus would be treated (green frame) or not treated (red frame) by the clinician. These cues prompted clinicians prepare to either apply or not apply treatment while evoking corresponding anticipation for the patient. Following the anticipation cue, moderately painful pressure pain was applied to the patient’s left leg, while the clinician applied or did not apply treatment, respectively. After another resting period, participants rated pain (patients), vicarious pain (clinicians), and affect (both) using a visual analog scale (VAS).

News | Clinical Trials | October 22, 2020
October 22, 2020 — The potential impact of the patient-clinician relationship on a patient's response to treatment is
The FDA clearance, Quantib’s 6th to date, marks the first time a comprehensive AI prostate solution will be available to radiologists in the United States
News | Prostate Cancer | October 21, 2020
October 21, 2020 — Quantib, a market leader in...
Lesion was originally reported as indeterminate enhancing mass, and outside report recommended biopsy. Classic features of benign hemangioma are shown. Error was attributed to faulty reasoning. A, Axial MR image obtained 5 minutes after contrast agent administration shows peripheral nodular discontinuous enhancement. B, Axial MR image obtained 10 minutes after contrast agent administration shows centripetal progression of enhancement (arrow). C, Axial fast imaging employing steady-state acquisition (FIESTA)

Lesion was originally reported as indeterminate enhancing mass, and outside report recommended biopsy. Classic features of benign hemangioma are shown. Error was attributed to faulty reasoning. A, Axial MR image obtained 5 minutes after contrast agent administration shows peripheral nodular discontinuous enhancement. B, Axial MR image obtained 10 minutes after contrast agent administration shows centripetal progression of enhancement (arrow). C, Axial fast imaging employing steady-state acquisition (FIESTA) MR image shows lesion is homogeneously hyperintense compared with liver parenchyma. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Magnetic Resonance Imaging (MRI) | October 21, 2020
October 21, 2020 — According to an artic...