News | PET-CT | July 15, 2020

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

July 15, 2020 — Targeted radionuclide therapy has been found to create a favorable tumor microenvironment in prostate cancer that improves the effectiveness of immunotherapies. The research, presented at the Society of Nuclear Medicine and Molecular Imaging's 2020 Annual Meeting, shows that immunomodulation can be achieved with relatively low radiation dose that does not affect the normal immune system.

Due to a significantly immunosuppressive tumor microenvironment, immunotherapy has had limited success in the treatment of prostate cancer. External beam radiotherapy, which has been shown to remodel the tumor microenvironment of irradiated tumors to make them more immune-susceptible even at low radiation doses, is limited to the localized disease setting.

"Understanding this treatment dynamic, our goal in this study was to demonstrate that systemically delivered targeted radionuclide therapy provides beneficial immunomodulatory effects that may enhance the response of prostate cancer to immunotherapies," said Reinier Hernandez, Ph.D., assistant professor of medical physics and radiology at the University of Wisconsin-Madison in Madison Wisconsin.

In the study, male mice bearing syngeneic prostate tumor allografts were administered 86Y-NM600 and received positron emission tomography/computed tomography (PET/CT) scans at three, 24, 48 and 72 hours after injection. Radiotracer uptake was analyzed in tumors and in healthy tissues, which allowed researchers to estimate the dosimetry for the targeted radionuclide therapy 90Y-NM600.

Groups of mice were administered either a high or low dose of 90Y-NM600, and tumor growth and survival were monitored for 60 days. A separate group of mice received the same 90Y-NM600 doses and were euthanized to analyze the immunological effects (flow cytometry, immunohistochemistry and Luminex cytokine profiling) of the radionuclide therapy on the tumor microenvironment and lymphoid tissues.

Data from PET/CT imaging revealed that 90Y-NM600 immunomodulates the tumor microenvironment of prostate tumors by modifying tumor-infiltrating lymphocyte populations, upregulating checkpoint molecules, and promoting the release of pro-inflammatory cytokines. 90Y-NM600's pro-inflammatory effects on the tumor microenvironment were found to be elicited at relatively low radiation doses without incurring systemic toxicity.

"Our results provide a rationale for combining targeted radionuclide therapy with immunotherapies, which, so far, have proven ineffective in prostate cancer. Improving immunotherapy in prostate cancer could bring about a potentially curative treatment alternative for advanced-stage patients. We are actively working to advance the immunomodulation concept into Phase I clinical trials," stated Hernandez.

The study also presents a paradigm change in targeted radionuclide therapy, where the maximum tolerable dose may not always be the most beneficial to patients. "A key finding of our work is that immunomodulation is best achieved with a relatively low radiation dose to the tumor which does not affect the normal immune system," Hernandez noted. "As high radiation doses to normal lymphoid organs can negate the benefits of immunomodulation, estimating the radiation doses imparted to the tumor and normal tissues prospectively by using patient-specific image-based dosimetry techniques is critical. This means that, essentially, a theranostic approach must be implemented."

Abstract 36. "Low-dose TRT reshapes the microenvironment of prostate tumors to potentiate response to immunotherapy," Reinier Hernandez, Hemanth Potluri, Eduardo Aluicio-Sarduy, Joseph Grudzinski, Christopher Massey, Christopher Zahm, Jonathan Engle, Douglas McNeel and Jamey Weichert, University of Wisconsin-Madison, Madison, Wisconsin. SNMMI's 67th Annual Meeting, July 11-14, 2020.

For more information: www.snmmi.org

Related SNMMI20 Content:

SNMMI Channel

PSMA PET/CT Can Change Management in Recurrent Prostate Cancer

Total-body Dynamic PET Successfully Detects Metastatic Cancer

New PET Radiotracer Proven Safe in Imaging Malignant Brain Tumors

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

New PET/MRI Approach Pinpoints Chronic Pain Location, Alters Management

Related Content

After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by

After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by N. Galldiks et al., Research Center Juelich, Juelich, Germany.

News | PET Imaging | May 05, 2021
May 5, 2021 — For patients with brain metastases, amino acid ...
The emergence of #therapeutic #radiopharmaceuticals and its adoption in #cancer care provide one more weapon in combating cancer

Getty Images

Feature | Radiation Oncology | May 04, 2021 | By Vinay Shivaprasad
The term nuclear medicine is associated with the diag
#prostatecancer During the first wave of the corona pandemic, 36 percent fewer men were diagnosed with prostate cancer in Sweden than in previous years.

Getty Images

News | Prostate Cancer | April 30, 2021
April 30, 2021 — During the first wave of the corona pandemic, 36 percent fewer men were diagnosed with prostate canc
Using ultra-high field magnetic resonance imaging (MRI) to map the brains of people with #Down_syndrome (#DS), #researchers from #CaseWesternReserveUniversity, #ClevelandClinic, University Hospitals and other institutions detected subtle differences in the structure and function of the #hippocampus—a region of the #brain tied to memory and learning.

Using ultra-high field magnetic resonance imaging (MRI) to map the brains of people with Down syndrome (DS), researchers from Case Western Reserve University, Cleveland Clinic, University Hospitals and other institutions detected subtle differences in the structure and function of the hippocampus—a region of the brain tied to memory and learning.

News | Magnetic Resonance Imaging (MRI) | April 29, 2021
April 29, 2021 — Using...
Overview of the scaphoid fracture detection pipeline, which consisted of a segmentation and detection convolutional neural network (CNN). A class activation map is calculated and visualized as a heatmap for fracture localization. Image courtesy of Radiological Society of North America

Overview of the scaphoid fracture detection pipeline, which consisted of a segmentation and detection convolutional neural network (CNN). A class activation map is calculated and visualized as a heatmap for fracture localization. Image courtesy of the Radiological Society of North America

News | Artificial Intelligence | April 28, 2021
April 28, 2021 — An automated system that uses...
olecular Targeting Technologies, Inc. (MTTI) announced the issuance of United States Patent # 10,953,113. The patent claims a quick (5 min), easy and quantitative conversion of commercially available 18F-deoxyglucose (18F-FDG) to 18F-Fluroglucaric acid (18F-FGA).

Getty Images

News | PET Imaging | April 19, 2021
April 19, 2021 — Molecular Targeting Technologies, Inc.
The inflamed joints of a #rheumatoid #arthritis patient are clearly visible in the #PET images with the novel 68Ga-DOTA-Siglec-9 #radiopharmaceutical. Image courtesy of Anne Roivainen

The inflamed joints of a rheumatoid arthritis patient are clearly visible in the PET images with the novel 68Ga-DOTA-Siglec-9 radiopharmaceutical. Image courtesy of Anne Roivainen

News | PET Imaging | April 19, 2021
April 19, 2021 — The preliminary...