Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.


July 16, 2020 — Results from the first study using uEXPLORER to conduct total-body dynamic positron emission tomography (PET) scans in cancer patients show that it can be used to generate high-quality images of metastatic cancer. The research was presented at the Society of Nuclear Medicine and Molecular Imaging 2020 Virtual Annual Meeting on July 11-14.

While static PET provides a simple snapshot of radiopharmaceutical concentration, dynamic PET with tracer kinetic modeling can provide parametric images that show how tissue is actually behaving. Parametric images have the potential to better detect lesions and assess cancer response to therapy. This potential, however, has not been fully studied in the clinic because conventional PET scanners have a limited axial field-of-view and are not capable of simultaneous dynamic imaging of lesions that are widely separated in the body.

"The focus of our study was to test the capability of uEXPLORER for kinetic modeling and parametric imaging of cancer," explained Guobao Wang, Ph.D., associate professor and Paul Calabresi Clinical Oncology K12 Scholar in the department of radiology at the University of California (UC), Davis, in Sacramento, Calif. "Different kinetic parameters can be used in combination to understand the behavior of both tumor metastases and organs of interest such as the spleen and bone marrow. Thus, both tumor response and therapy side-effects can be assessed using the same scan."

A patient with metastatic renal cell carcinoma was injected with the radiotracer 18F-FDG and scanned on the uEXPLORER total-body PET/CT scanner. The static PET standardized uptake value (SUV) was calculated and kinetic modeling was performed for regional quantification in 16 regions of interest, including major organs and multiple metastases. The glucose influx rate was calculated and additional kinetic modeling was implemented to generate parametric images of the kinetic parameters. The kinetic data were then used to explore tumor detection and tumor characterization.

Multiple metastases were identified on the dynamic PET/CT scan, confirming that it is feasible to perform total-body kinetic modeling and parametric imaging of metastatic cancer. Parametric images of glucose influx rate showed improved tumor contrast over SUV in general, and specifically led to improved visibility of cancer lesions detection in the liver. Total-body kinetic quantification also provided multi-parametric characterization of tumor metastases and organs of interest.

"Total-body dynamic imaging and kinetic modeling enabled by total-body PET have the potential to change nuclear medicine into a multi-parametric imaging method, where many different aspects of tissue behavior can be assessed in the same clinical setting--much like the information gained from different sequences in an MRI scan," said Ramsey D. Badawi, professor in the department of radiology and co-director of the EXPLORER molecular imaging center, UC Davis. "The total-body parametric imaging technique is not limited to 18F-FDG; it is applicable to all radiotracers. It is also not limited to cancer but can be broadly applied to evaluate disease severity and organ interactions in many other systemic diseases. We expect a profound impact in the field of nuclear medicine and molecular imaging."

For more information: www.snmmi.org

Related SNMMI20 Content:

SNMMI Channel

PSMA PET/CT Can Change Management in Recurrent Prostate Cancer

Total-body Dynamic PET Successfully Detects Metastatic Cancer

New PET Radiotracer Proven Safe in Imaging Malignant Brain Tumors

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

New PET/MRI Approach Pinpoints Chronic Pain Location, Alters Management


Related Content

News | Radiopharmaceuticals and Tracers

February 21, 2024 — Blue Earth Therapeutics, a Bracco company and emerging leader in the development of innovative next ...

Time February 21, 2024
arrow
News | Radiopharmaceuticals and Tracers

February 14, 2024 — PanTera, the Belgian joint venture created by IBA and SCK CEN to secure large-scale production of ...

Time February 14, 2024
arrow
News | Quality Assurance (QA)

February 12, 2024 — IBA, a world leader in particle accelerator technology and a world-leading provider of dosimetry and ...

Time February 12, 2024
arrow
News | PET Imaging

February 9, 2024 — A novel PET imaging technique can noninvasively detect active inflammation in the body before ...

Time February 09, 2024
arrow
Videos | RSNA

At RSNA23, Imaging Technology News (ITN) spoke with Bhvita Jani, principal analyst at Signify Research, about ...

Time February 07, 2024
arrow
News | Interventional Radiology

February 6, 2024 — RenovoRx, Inc., a clinical-stage biopharmaceutical company developing novel precision oncology ...

Time February 06, 2024
arrow
News | SNMMI

February 6, 2024 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) held its 2024 SNMMI Mid-Winter Meeting ...

Time February 06, 2024
arrow
News | Treatment Planning

February 2, 2024 — RaySearch Laboratories announced that the number of radiotherapy centers that have chosen RayStation ...

Time February 02, 2024
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

It's a new year, and as another month comes to a close, ITN takes a look at the Top 10 most-read pieces of content from ...

Time February 01, 2024
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

Did you know that Imaging Technology News (ITN) maintains more than 40 comparison charts of product specifications from ...

Time January 29, 2024
arrow
Subscribe Now