News | PET Imaging | July 16, 2020

Total-body Dynamic PET Successfully Detects Metastatic Cancer

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.

July 16, 2020 — Results from the first study using uEXPLORER to conduct total-body dynamic positron emission tomography (PET) scans in cancer patients show that it can be used to generate high-quality images of metastatic cancer. The research was presented at the Society of Nuclear Medicine and Molecular Imaging 2020 Virtual Annual Meeting on July 11-14.

While static PET provides a simple snapshot of radiopharmaceutical concentration, dynamic PET with tracer kinetic modeling can provide parametric images that show how tissue is actually behaving. Parametric images have the potential to better detect lesions and assess cancer response to therapy. This potential, however, has not been fully studied in the clinic because conventional PET scanners have a limited axial field-of-view and are not capable of simultaneous dynamic imaging of lesions that are widely separated in the body.

"The focus of our study was to test the capability of uEXPLORER for kinetic modeling and parametric imaging of cancer," explained Guobao Wang, Ph.D., associate professor and Paul Calabresi Clinical Oncology K12 Scholar in the department of radiology at the University of California (UC), Davis, in Sacramento, Calif. "Different kinetic parameters can be used in combination to understand the behavior of both tumor metastases and organs of interest such as the spleen and bone marrow. Thus, both tumor response and therapy side-effects can be assessed using the same scan."

A patient with metastatic renal cell carcinoma was injected with the radiotracer 18F-FDG and scanned on the uEXPLORER total-body PET/CT scanner. The static PET standardized uptake value (SUV) was calculated and kinetic modeling was performed for regional quantification in 16 regions of interest, including major organs and multiple metastases. The glucose influx rate was calculated and additional kinetic modeling was implemented to generate parametric images of the kinetic parameters. The kinetic data were then used to explore tumor detection and tumor characterization.

Multiple metastases were identified on the dynamic PET/CT scan, confirming that it is feasible to perform total-body kinetic modeling and parametric imaging of metastatic cancer. Parametric images of glucose influx rate showed improved tumor contrast over SUV in general, and specifically led to improved visibility of cancer lesions detection in the liver. Total-body kinetic quantification also provided multi-parametric characterization of tumor metastases and organs of interest.

"Total-body dynamic imaging and kinetic modeling enabled by total-body PET have the potential to change nuclear medicine into a multi-parametric imaging method, where many different aspects of tissue behavior can be assessed in the same clinical setting--much like the information gained from different sequences in an MRI scan," said Ramsey D. Badawi, professor in the department of radiology and co-director of the EXPLORER molecular imaging center, UC Davis. "The total-body parametric imaging technique is not limited to 18F-FDG; it is applicable to all radiotracers. It is also not limited to cancer but can be broadly applied to evaluate disease severity and organ interactions in many other systemic diseases. We expect a profound impact in the field of nuclear medicine and molecular imaging."

For more information: www.snmmi.org

Related SNMMI20 Content:

SNMMI Channel

PSMA PET/CT Can Change Management in Recurrent Prostate Cancer

Total-body Dynamic PET Successfully Detects Metastatic Cancer

New PET Radiotracer Proven Safe in Imaging Malignant Brain Tumors

Targeted Radionuclide Therapy Enhances Prostate Cancer Response to Immunotherapies

New PET/MRI Approach Pinpoints Chronic Pain Location, Alters Management

Related Content

"Stereotactic radiosurgery versus whole-brain radiation therapy for patients with 4-15 brain metastases: A phase III randomized controlled trial" was presented by Jing Li, M.D., The University of Texas MD Anderson Cancer Center, at ASTRO20
News | Stereotactic Body Radiation Therapy (SBRT) | October 26, 2020
October 26, 2020 — Results of a new randomized phase III trial suggest that...
"Stereotactic ablative fractionated radiotherapy versus radiosurgery for oligometastatic neoplasia to the lung: A randomised phase II trial," presented by Shankar Siva, Ph.D., Peter MacCallum Cancer Centre, was presented at ASTRO20
News | Stereotactic Body Radiation Therapy (SBRT) | October 26, 2020
October 26, 2020 — A new study, conducted across 13 medical centers in Australia and New Zealand, strengthens the cas
"Initial report of a randomized trial comparing conventional- vs conventional plus fluciclovine (18F) PET/CT imaging-guided post-prostatectomy radiotherapy for prostate cancer" was presented by Ashesh Jani, M.D., Winship Cancer Institute of Emory University, at ASTRO20
News | PET Imaging | October 26, 2020
October 26, 2020 — Adding the advanced PET radiotracer...
A randomized phase II/III study comparing 24Gy in 2 stereotactic body radiotherapy (SBRT) fractions versus 20Gy in 5 conventional palliative radiotherapy (CRT) fractions for patients with painful spinal metastases was presented by Arjun Sahgal, M.D., University of Toronto, today at ASTRO20
News | Radiation Therapy | October 26, 2020
October 26, 2020 — A new study shows using fewer and higher doses of high-precision...
Nearly 40 MRIdian-focused presentations will be part of the ASTRO Scientific Sessions
News | Magnetic Resonance Imaging (MRI) | October 26, 2020
October 26, 2020 — ViewRay, Inc. announced that the company's MRIdian Linac MRI-guided radiation therapy system will
Treating lung cancer patients with proton therapy may help reduce the risk of radiation-induced heart diseases, suggests a new study from Penn Medicine. In a retrospective trial of more than 200 patients, mini-strokes were significantly less common among patients who underwent proton therapy versus conventional photon-based radiation therapy. Proton therapy patients also experienced fewer heart attacks.
News | Proton Therapy | October 25, 2020
October 25, 2020 — Treating lung cancer patients with prot...
Radiation Oncology Orchestrator (IntelliSpace Radiation Oncology) and Practice Management can reduce the time from patient referral to the start of treatment by up to half
News | Radiation Oncology | October 25, 2020
October 25, 2020 —Philips, a global leader in health technology, will showcase its latest advances in ...