Source: www.aapm.org

July 23, 2007 - By borrowing techniques used in telecommunications technology, computed tomography (CT) scanners may eventually see data collection speeds increase by hundreds of times, leading to better images, faster imaging procedures, and potentially lower X-ray exposures. A University of North Carolina team has pioneered a method that collects images from many sources at once, instead of the current serial method of data collection.

Modern CT scanners, widely used for diagnostic medical imaging and security screening, collect over 1,000 images in less than one second by high-speed rotation of an X-ray tube around the object. However, the data is collected in a serial fashion, essentially one piece of data at a time.

Multiplexing represents an innovative solution for potentially speeding up CT scans. A widely used concept in many communications-related fields, multiplexing is a process of combining multiple signals to form one composite signal for transmission. For the multiplexing CT scanner, multiple X-ray sources fire simultaneously to capture images from multiple views at the same time. In general, a factor of N/2 (N=total number of images) increase in the speed can be achieved using the multiplexing technique. For example, the speed of clinical CT scanners that acquire around 1,000 views per gantry rotation would increase by a factor of 500.

A team from the University of North Carolina, Chapel Hill, has been developing multiplexing CT scanners for several years. The team very recently created a 25-pixel multiplexing CT scanner, but engineering difficulties lie in front of the ultimate goal, a scanner with approximately 1,000 X-ray pixels. According to team leader Jian Zhang, the cost of these machines would not rise significantly, as new technology enables hundreds of X-ray cathodes to be fabricated on a single silicon wafer.

For more information: www.unc.edu, www.aapm.org


Related Content

News | RSNA 2025

Nov. 13, 2025 — Nano-X Imaging Ltd., a medical imaging technology company, will showcase its Nanox.ARC X multi-source ...

Time November 25, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Mammography

Sept. 3, 2025 — According to ARRS’ American Journal of Roentgenology (AJR), a commercial artificial intelligence (AI) ...

Time September 09, 2025
arrow
News | Lung Imaging

Aug. 26, 2025 — Optellum, a global leader in AI for lung health, recently announced the world’s first thorax CT ...

Time August 26, 2025
arrow
News | RSNA 2025

Aug. 13, 2025 — Registration is now open for the RSNA 111th Scientific Assembly and Annual Meeting, the world’s leading ...

Time August 13, 2025
arrow
News | Artificial Intelligence

July 22, 2025 — GE HealthCare has topped a U.S. Food and Drug Administration (FDA) list of AI-enabled medical device ...

Time July 23, 2025
arrow
News | Breast Imaging

QT Imaging Holdings, Inc. has announced the launch of its latest QTviewer, version 2.8. QTviewer stores and displays the ...

Time July 21, 2025
arrow
News | PET-CT

June 19, 2025 — Building on a collaboration that spans more than three decades, GE HealthCare has renewed its research ...

Time June 19, 2025
arrow
Subscribe Now