News | Neuro Imaging | July 11, 2017

Researchers Identify Visual System Changes that May Signal Parkinson's Disease

MRI reveals changes that could help differentiate Parkinsonism disorders, track disease progression and monitor patient response to drug treatment

Researchers Identify Visual System Changes that May Signal Parkinson's Disease

July 11, 2017 — Changes in the visual systems of newly diagnosed Parkinson’s disease patients may provide important biomarkers for the early detection and monitoring of the disease, according to a new study published online in the journal Radiology.

“Just as the eye is a window into the body, the visual system is a window into brain disorders,” said lead researcher Alessandro Arrigo, M.D., a resident in ophthalmology at the University Vita-Salute San Raffaele of Milan, Italy.

Parkinson’s disease is a neurodegenerative condition caused by neuronal loss in several brain structures. Parkinson’s disease is characterized by tremors, rigidity or stiffness throughout the body, and impaired balance and coordination.

“Although Parkinson’s disease is primarily considered a motor disorder, several studies have shown non-motor symptoms are common across all stages of the disease,” Arrigo said. “However, these symptoms are often undiagnosed because patients are unaware of the link to the disease and, as a result, they may be under-treated.”

Non-motor symptoms experienced by patients with Parkinson’s disease include visual alterations such as an inability to perceive colors, a change in visual acuity, and a decrease in blinking which can lead to dry eye.

“These non-motor Parkinson’s symptoms may precede the appearance of motor signs by more than a decade,” Arrigo said.

The study of 20 newly diagnosed and not yet treated patients (11 men, 9 women) with Parkinson’s disease and 20 age- and gender-matched healthy controls involved a multi-disciplinary team of researchers in ophthalmology, neurology and neuroradiology of the University of Messina, Italy. Magnetic resonance imaging (MRI) was performed on both the healthy controls and the patients, who underwent imaging within four weeks of their diagnosis. Researchers used an MRI technique called diffusion weighted imaging to assess white matter changes and voxel-based morphometry (VBM) to investigate concentration changes of brain’s gray and white matter. All study participants also had ophthalmologic examinations.

The researchers found significant abnormalities within the visual system brain structures of Parkinson’s disease patients, including alterations of optic radiations, a reduction of white matter concentration and a reduction of optic chiasm volume. The optic chiasm is the part of the brain where the left and right optic nerves intersect.

“The study in depth of visual symptoms may provide sensitive markers of Parkinson’s disease,” Arrigo said. “Visual processing metrics may prove helpful in differentiating Parkinsonism disorders, following disease progression, and monitoring patient response to drug treatment.”

Arrigo added that future studies are needed to better understand the timing of degeneration along visual pathways, as well as the specific changes.

“We’re excited by our findings,” he said. “However, this is just a starting point.”

For more information: www.pubs.rsna.org/radiology

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Canon Aquilion One CT Helps Gates Vascular Institute Adhere to New Stroke Guidelines
News | Computed Tomography (CT) | December 12, 2018
In stroke, time saved on imaging is time gained in the treatment window. The recently updated guidelines from the...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Siemens Healthineers Debuts Magnetom Altea 1.5T MRI Scanner
Technology | Magnetic Resonance Imaging (MRI) | December 06, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...
NeuroLogica and MaxQ AI Announce Distribution Agreement
News | Stroke | November 30, 2018
Clinical diagnostics intelligence platform company MaxQ AI and Samsung NeuroLogica announced a distribution agreement...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
Vital Showcases Enterprise Imaging Advances at RSNA 2018

Global Illumination from Vital Images

News | Enterprise Imaging | November 28, 2018
Vital, a Canon Group company, will highlight the latest additions to its enterprise imaging portfolio at the 2018...
Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

News | Contrast Media | November 27, 2018
Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in...