News | November 18, 2008

Philips, Neuronexus Technologies Partner to Research Deep Brain Stimulation Devices

November 18, 2008 - NeuroNexus Technologies and Philips Research said today that they have signed a joint research agreement to develop next-generation deep brain stimulation devices with the ambition to improve the treatment of neurological diseases and psychiatric disorders.

By combining Philips Research’s strengths in microelectronics, signal processing, ultra-low power system design and miniaturization with NeuroNexus Technologies’ expertise in micro-scale electrode design and fabrication, the two companies aim to show the technical feasibility of highly programmable and MRI-safe deep brain stimulation devices. Their initial research will aim to meet the functional requirements of a deep brain stimulation device for the treatment of Parkinson’s disease. Recent publications suggest that deep brain stimulation could also be suitable for treating psychiatric disorders such as clinical depression.

Late-stage Parkinson’s disease is increasingly being treated using deep brain stimulation – a technique that involves implantation of a medical device, a “brain pacemaker” that sends electrical impulses to specific parts of the patient’s brain via permanently inserted electrodes. The pacemaker control unit is normally implanted into the patient’s chest or abdomen, with a connecting lead routed under the skin to the brain electrode. While offering an effective therapy that helps many patients, currently available technologies have significant limitations.

“As currently used, deep brain stimulation poses several challenges to both the patient and the physician: The implantation requires a lengthy surgical procedure involving both neurosurgeons and neurologists. Following surgery, setting the right stimulation parameters requires painstaking efforts on the part of the neurologists before the patient can be sent home. In the long term, patients may for example develop spine problems that would require further examination using MRI, but with current implants MRI scans are not possible due to the materials used in the fabrication of DBS electrodes and the stimulators,” said professor Maximilian Mehdorn, head of neurosurgery at the Christian-Albrechts University of Kiel, Germany.

The joint research project aims to address these clinical needs, and will leverage Philips’ expertise in medical imaging and surgery planning with the aim of simplifying the implantation process and shortening the surgical procedure. Philips will also contribute to making the entire device MRI compatible so that patients fitted with the implant are not barred from MRI scans. .

For more information: www.medical.philips.com, www. neuronexustech.com

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init