News | November 18, 2008

Philips, Neuronexus Technologies Partner to Research Deep Brain Stimulation Devices

November 18, 2008 - NeuroNexus Technologies and Philips Research said today that they have signed a joint research agreement to develop next-generation deep brain stimulation devices with the ambition to improve the treatment of neurological diseases and psychiatric disorders.

By combining Philips Research’s strengths in microelectronics, signal processing, ultra-low power system design and miniaturization with NeuroNexus Technologies’ expertise in micro-scale electrode design and fabrication, the two companies aim to show the technical feasibility of highly programmable and MRI-safe deep brain stimulation devices. Their initial research will aim to meet the functional requirements of a deep brain stimulation device for the treatment of Parkinson’s disease. Recent publications suggest that deep brain stimulation could also be suitable for treating psychiatric disorders such as clinical depression.

Late-stage Parkinson’s disease is increasingly being treated using deep brain stimulation – a technique that involves implantation of a medical device, a “brain pacemaker” that sends electrical impulses to specific parts of the patient’s brain via permanently inserted electrodes. The pacemaker control unit is normally implanted into the patient’s chest or abdomen, with a connecting lead routed under the skin to the brain electrode. While offering an effective therapy that helps many patients, currently available technologies have significant limitations.

“As currently used, deep brain stimulation poses several challenges to both the patient and the physician: The implantation requires a lengthy surgical procedure involving both neurosurgeons and neurologists. Following surgery, setting the right stimulation parameters requires painstaking efforts on the part of the neurologists before the patient can be sent home. In the long term, patients may for example develop spine problems that would require further examination using MRI, but with current implants MRI scans are not possible due to the materials used in the fabrication of DBS electrodes and the stimulators,” said professor Maximilian Mehdorn, head of neurosurgery at the Christian-Albrechts University of Kiel, Germany.

The joint research project aims to address these clinical needs, and will leverage Philips’ expertise in medical imaging and surgery planning with the aim of simplifying the implantation process and shortening the surgical procedure. Philips will also contribute to making the entire device MRI compatible so that patients fitted with the implant are not barred from MRI scans. .

For more information: www.medical.philips.com, www. neuronexustech.com

Related Content

Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

Feature | ASTRO | October 20, 2018 | By Greg Freiherr
A linear accelerator combined with high-field MRI could soon be on the U.S. market. If U.S.