News | September 23, 2009

Philips, Bruker Sign MOU to Develop Magnetic Particle Imaging Scanners

New medical imaging technology, Magnetic Particle Imaging (MPI), which generates unprecedented real-time images of blood flow and heart movement may improve disease diagnosis and treatment planning.

September 23, 2009 - At the 2009 World Molecular Imaging Congress (WMIC) in Montreal, Royal Philips Electronics and Bruker BioSpin, a division of Bruker Corp., today announced that they have signed a memorandum of understanding (MOU) for the development of magnetic particle imaging (MPI) scanners, a new imaging technology, for the preclinical market.

The partnership would unite Philips’ strength in medical imaging and Bruker BioSpin’s leadership in analytical magnetic resonance instruments and preclinical Magnetic Resonance Imaging (MRI).

Under the terms of the MOU, Bruker BioSpin intends to develop and manufacture the preclinical MPI scanner at its facilities in Ettlingen, Germany. Both parties intend to co-market the resulting solution. Preclinical imaging has emerged as a powerful tool in disease studies, translational research and drug discovery. Philips and Bruker BioSpin believe that the addition of MPI as a complementary preclinical imaging technique has great potential to help researchers gain new insights in disease processes at the organ, cellular and molecular level.
MPI is a new medical imaging technology developed by scientists at Philips. It uses the magnetic properties of iron-oxide nanoparticles to produce three-dimensional images of the concentration of nanoparticles injected into the bloodstream. The potential of the technology for medical and industrial research and, ultimately, patient care, was demonstrated in a publication which appeared in the March issue of Physics in Medicine and Biology in 2009 (Volume 54, issue 5). It was shown that MPI technology can be used to produce real-time images that accurately capture the activity in the cardiovascular system of a mouse.
“We are very pleased about this collaboration with Philips on this exciting technology. Magnetic Particle Imaging is expected to allow scientists to explore an extensive range of new imaging capabilities and applications in preclinical research, ” said Wulf-Ingo Jung, managing mirector of Bruker BioSpin MRI GmbH. “The highly sensitive visualization of functional characteristics in vivo at high temporal resolution bears great potential for small animal imaging, especially when combined with high spatial resolution morphological MRI.”
“Through its combined speed, resolution and sensitivity, our Magnetic Particle Imaging technology has great potential for the diagnosis, therapy planning and therapy response assessment for major diseases such as heart disease and cancer,” said Diego Olego, senior vice president and CTO of Philips Healthcare. “We are excited about the agreement with Bruker BioSpin as it will lead to the availability of MPI scanners for preclinical research studies, which is a prerequisite for establishing the value of this promising new technology for patient care.”
A key success factor for the effective translation of new imaging concepts into practice are partnerships with leading academic medical institutions, industrial partners and governments. Bringing together such partnerships is one of the underlying principles behind Philips’ policy of open innovation. The results obtained in the MAGIC (Magnetic Particle Imaging for Cardio-Vascular Applications) research project conducted at the Philips Research Laboratories in Hamburg (Germany), have significantly contributed to the development of MPI. The project was funded by the German Federal Ministry of Education and Research under grant Number 13N9079 as part of the NanoForLife Framework Program. The project was started in 2006 and will finish by the end of this year.

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Book Chapter Reports on Fonar Upright MRI for Hydrocephalus Imaging

Rotary misalignment of atlas (C1) and axis (C2). Image courtesy of Scott Rosa, DC, BCAO.

News | Magnetic Resonance Imaging (MRI) | March 20, 2019
Fonar Corp. reported publication of a chapter where the physician-author-researchers utilized the Fonar Upright Multi-...
Non-Contrast MRI Effective in Monitoring MS Patients
News | Neuro Imaging | March 18, 2019
Brain magnetic resonance imaging (MRI) without contrast agent is just as effective as the contrast-enhanced approach...
New MRI Sensor Can Image Activity Deep Within the Brain
News | Magnetic Resonance Imaging (MRI) | March 15, 2019
Calcium is a critical signaling molecule for most cells, and it is especially important in neurons. Imaging calcium in...
Iron Measurements With MRI Reveal Stroke's Impact on Brain

Images show illustrative examples of visual R2? modifications within substantia nigra (SN) at baseline (24-72 h) and follow-up (1 y) in striatum (participants 1 and 2) and control groups (participants 3 and 4). Image courtesy of the Radiological Society of North America (RSNA).

News | Stroke | March 12, 2019
March 12, 2019 — A simple ...
Siemens Healthineers Announces First U.S. Install of Magnetom Sola 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | March 04, 2019
South Texas Radiology Imaging Centers, San Antonio, recently became the first healthcare institution in the United...
Videos | Cardiac Imaging | February 27, 2019
This is a virtual heart with the same electrophysiology characteristics as the real patient unveiled by Siemens at th