A newly discovered radionuclide-based agent (CB-2PA-NT) has been shown to have high tumor uptake, sustained tumor retention, and high contrast in preclinical models, making it a prime candidate for a novel theranostics approach

Figure 1. Representative PET image of three leading compounds in H1299 tumor mouse at 24 hours post-injection at 10 %ID/g scale.


June 28, 2023 — A newly discovered radionuclide-based agent (CB-2PA-NT) has been shown to have high tumor uptake, sustained tumor retention, and high contrast in preclinical models, making it a prime candidate for a novel theranostics approach. Targeting the neurotensin receptors (NTSRs) that are present in a variety of cancers, CB-2PA-NT has the potential to significantly expand the scope of precision medicine. This research was presented at the 2023 Society of Nuclear Medicine and Molecular Imaging Annual Meeting.

NTSRs are overexpressed in a variety of cancers, including lung, colorectal, breast, pancreatic and prostate cancers. Recently, several attempts have been made to synthesize radiometal-labeled agents that target the receptor NTSR1. However, most of those attempts have demonstrated only moderate tumor uptake and retention.

“Building on previous research and experience, my colleagues and I discovered that the cross-linked polyamine moiety can greatly improve tumor uptake and maintain high contrast,” said Xinrui Ma, MPH, a doctoral student at the University of North Carolina in Chapel Hill, North Carolina. “In this study we tested a series of NTSR1 antagonists to see which was most useful for imaging and therapy applications.”

A series of NTSR1 antagonists were synthesized with variable propylamine linker length and different chelators (CB, NOTA, and DOTA), and radiolabeling reactions were performed. Western blot was used to determine the NTSR expression in human lung cancer cell lines (H1299). The antagonists’ in vitro and in vivo stability and binding affinity to lung cancer cells were also assessed. Finally, small animal PET/CT imaging was used to evaluate the agents’ biodistribution properties.

NTSR1 was confirmed to have high expression in H1299 cells by western blot. The antagonist CB-2PA-NT showed good binding affinity toward H1299 cells, and small mammal imaging confirmed its prominent tumor uptake, high tumor-to-background contrast and long tumor retention. After comparison with the other NTSR1 antagonists, CB-2PA-NT was identified as the leading agent for further evaluation.

“The success of this theranostic approach has the potential to provide an accurate imaging-based method to efficiently detect NTSR1 expression in multiple types of cancer for diagnosis, patient screening, and treatment monitoring, as well as a radionuclide-based agent for therapy. This will ultimately lead to more personalized medicine for cancer patients,” noted Ma.
To further explore the theranostic potential of this agent for patient management, University of North Carolina researchers have collaborated with the University of Wisconsin, and first-in-human imaging with CB-2PA-NT is expected to begin in the near future after regulatory approval.

For more information: www.snmmi.org

Find more SNMMI23 conference coverage here

 


Related Content

News | Radiation Therapy

May 23, 2024 — RaySearch Laboratories AB and C-RAD announced a collaboration agreement, aiming at jointly developing ...

Time May 23, 2024
arrow
News | Radiology Business

May 22, 2024 — Medtronic has announced new preliminary data from the VERITAS clinical study using its ILLUMISITE ...

Time May 22, 2024
arrow
News | Artificial Intelligence

May 22, 2024 — Lunit, a provider of Artificial intelligence (AI)-powered solutions for cancer diagnostics and ...

Time May 22, 2024
arrow
News | Artificial Intelligence

May 22, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, recently ...

Time May 22, 2024
arrow
News | Oncology Information Management Systems (OIMS)

May 21, 2024 — RaySearch Laboratories AB announced that the oncology information system RayCare* 2024A has been ...

Time May 21, 2024
arrow
News | Proton Therapy

May 21, 2024 — IBA, a world leader in particle accelerator technology, announced that it has signed a contract with the ...

Time May 21, 2024
arrow
News | Radiology Business

May 20, 2024 — Associated Medical Professionals of NY (A.M.P.) announced that internationally recognized radiation ...

Time May 20, 2024
arrow
News | ASTRO

May 17, 2024 — Registration opens today for the American Society for Radiation Oncology's (ASTRO) 66th Annual Meeting ...

Time May 17, 2024
arrow
News | Radiation Therapy

May 16, 2024 — Today marks a significant milestone in cancer care with the introduction of bipartisan federal ...

Time May 16, 2024
arrow
News | FDA

May 14, 2024 — Indica Labs, the leading provider of digital pathology solutions, announced today that it received FDA ...

Time May 14, 2024
arrow
Subscribe Now