News | Magnetic Resonance Imaging (MRI) | July 25, 2016

New Superconducting Coil Improves MRI Performance

University of Houston-led research offers higher resolution, shorter scan time

MRI, superconducting coil, University of Houston, Jarek Wosik

July 25, 2016 — A multidisciplinary research team has developed a high-temperature superconducting coil that allows magnetic resonance imaging (MRI) scanners to produce higher resolution images or acquire images in a shorter time than when using conventional coils. The team is led by University of Houston (UH) scientist Jarek Wosik.

Wosik, a principal investigator at the Texas Center for Superconductivity at UH, said test results show the new technology can reveal brain structures that aren't easily visualized with conventional MRI coils. He also is a research professor in the UH Department of Electrical and Computer Engineering.

The cryo-coil works by boosting the signal-to-noise ratio (SNR) — a measure of the strength of signals carrying useful information — by a factor of two to three, compared with conventional coils. SNR is critical to the successful implementation of high resolution and fast imaging.

Wosik said the cryo-coil reveals more details than a conventional coil because of its enhanced SNR profile. Where a conventional coil does not have enough sensitivity to "see," a superconducting coil can still reveal details. These details will remain hidden to conventional coils even when image acquisition is repeated endlessly.

For the initial tests, the probe was optimized for rat brain imaging, useful for biomedical research involving neurological disorders. But it also has direct implications for human healthcare, Wosik said.

"Research in animal models yields critical information to improve diagnosis and treatment of human diseases and disorders," he said. "This work also has the potential to clearly benefit clinical MRI, both through high-quality imaging and through shortening the time patients are in the scanner."

Results from preliminary testing of the 7 Tesla MRI Cryo-probe were presented at the International Symposium of Magnetic Resonance in Medicine annual meeting in May. The coil can be optimized for experiments on living animals or brain tissue samples, and researchers said they demonstrated an isotropic resolution of 34 micron in rat brain imaging. In addition to its use in MRI coils, superconductivity lies at the heart of MRI scanning systems, as most high-field magnets are based on superconducting wire.

In addition to Wosik, collaborators on the project include Ponnada A. Narayana, director of the Magnetic Resonance Imaging Center and a professor in the Department of Diagnostic and Interventional Imaging at the University of Texas Health Science Center at Houston; Kurt H. Bockhorst, senior research scientist at UT Houston; Kuang Qin, a graduate student working with Wosik; and I-Chih Tan, assistant professor in the Department of Neuroscience at Baylor College of Medicine.

"Compared to corresponding standard room temperature MRI coils, the performance of the cooled normal metal and/or the high-temperature superconducting receiver coils lead either to an increase in imaging resolution and its quality, or to a very significant reduction in total scan time," Wosik said.

For more information: www.ismrm.org

Related Content

Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
First Arterial and Venous Atlas of the Human Brain Released
News | Neuro Imaging | January 02, 2019
January 2, 2019 — Imagine an atlas containing an image bank of the blood vessels of the...
MRI Effective for Monitoring Liver Fat in Obese Patients
News | Magnetic Resonance Imaging (MRI) | December 28, 2018
Magnetic resonance imaging (MRI) provides a safe, noninvasive way to monitor liver fat levels in people who undergo...
FDA Approves Exablate Neuro for Tremor-Dominant Parkinson's Treatment
Technology | Focused Ultrasound Therapy | December 21, 2018
Insightec announced that the U.S. Food and Drug Administration (FDA) has approved an expansion of the indication of...
Videos | Artificial Intelligence | December 21, 2018
Enhao Gong, Ph.D., founder of Subtle Medical, an artificial intelligence (AI) company that develops products to help
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Siemens Healthineers Debuts Magnetom Altea 1.5T MRI Scanner
Technology | Magnetic Resonance Imaging (MRI) | December 06, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...