Technology | Nuclear Imaging | August 08, 2016

New MR-based Visualization Method Creates Real-time Brain Animations

Active areas of the brain light up in animation technique

Fraunhofer MEVIS, real-time brain animation, MRI, CT

Image courtesy of Fraunhofer MEVIS

July 28, 2016 — Researchers at the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen, Germany, are preparing to unveil a new visualization technology that creates real-time animations of the human brain. The method will premiere Oct. 1 in an exhibit at the Audioversum Science Center in Innsbruck, Austria.

The new method uses modern visualization technology called ‘physically based rendering’ in combination with medical image data and enriched with clinically relevant supplementary information.

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of the head. These images show which brain areas activate when we speak, see, hear, or touch.

Computer technology now is so powerful that photorealistic animations can even be produced with common PCs and modern graphic cards. Physically-based rendering plays an important role here, simulating how individual rays of light spread in specific scenery and how the environment influences each ray in reality. Mirrors reflect these rays; frosted glass weakens and scatters them; obstacles absorb them. As a result, walls, objects and people appear in naturally pleasing light, wine glasses mirror reflections, objects cast complex shadows. The scene appears as realistic as a photo or a video.

Hollywood directors and computer game programmers regularly use such systems and astound the public with increasingly lifelike computer images. Fraunhofer MEVIS experts use this technique for another purpose: Based on medical data from computed tomography (CT) or magnetic resonance (MR) images, they produce three-dimensional, moving images enriched with supplementary medical information. Their work results in moving images that visualize complex medical relationships in an aesthetical and instructive way. Initial applications include 2-D and 3-D movies, training materials and interactive installations. In the long term, the method can be used as an augmented visualization tool in medicine, for example, for diagnosis and operation planning.

Software systems that process medical image data from CT and MR scanners into three-dimensional images have existed for some time. “We took these anatomical images to another level with photorealistic, clinically relevant supplementary information that can be extracted from medical data with the help of special software,” explained Alexander Köhn, software architect at Fraunhofer MEVIS. “This supplementary information fuses with anatomical imagery.”

One example for this ‘Meta-realistic Medical Moving Images’ approach is an interactive image sequence that visualizes the functionality of the human brain. “We want to use the strong visual cognitive ability of the human to transfer complex interrelationships in an intuitive, correct and fast way,” said Bianka Hofmann, scientific communication specialist at Fraunhofer MEVIS. The researchers first produced high-resolution anatomical 3-D images of the brain with an MR scanner. Then, subjects performed different tasks in the scanner, such as reading texts, reciting poems, listening to music or viewing images. They switched the scanner to a specific mode, allowing it to capture, in high temporal resolution, the effect of blood supply in the brain during the different tasks.

Based on these functional MR images, statistical algorithms determine how intensively the different brain areas participate in the specific tasks. The auditory center on the side of the skull reacts when listening to music and the visual cortex on the back of the head is stimulated when observing images. The higher the intensity, the brighter this particular image volume becomes. When combined with anatomical MR data, images emerge in which the brain areas responsible for seeing or hearing start to glow. With the help of physically based rendering, these images appear extremely realistic.

On October 1, the technique will be unveiled at the AUDIOVERSUM in Innsbruck, Austria during the Long Night of Museums. The Science Center will present an exhibit designed by Fraunhofer MEVIS which allows visitors to discover the brain’s functionality interactively. In addition to the Oct. 1 exhibit, on Sept. 9-10, MEVIS Institute Director Horst Hahn will present sequences from the ‘Meta-realistic Medical Moving Images’ at the Ars Electronica Festival in Linz.

For more information: www.mevis.fraunhofer.de

Related Content

An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
A cutting-edge magnet resonance imaging (MRI) technique to detect iron deposits in different brain regions can track declines in thinking, memory and movement in people with Parkinson's disease #Parkinsons #MRI

Summary steps of the processing pipeline for QSM reconstruction (phase pre-processing and map estimation) and whole brain/regional analysis. ANTs, advanced normalisation tools; MP-RAGE, magnetisation-prepared, 3D, rapid, gradient-echo; MSDI, multi-scale dipole inversion; QSM, quantitative susceptibility mapping; ROI, region of interest; SWI, susceptibility weighted imaging.

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — A cutting-edge...
Two magnetic resonance imaging (MRI) findings — joint capsule edema and thickness at the axillary recess, specifically — proved useful in predicting stiff shoulder in patients with rotator cuff tears, according to an ahead-of-print article in the May issue of the American Journal of Roentgenology (AJR)

A: Oblique coronal fat-suppressed T2-weighted MR image shows normal hypointense joint capsule at axillary recess (arrow). Note full-thickness tear of supraspinatus tendon (arrowheads) B: Oblique sagittal proton density MR image shows preserved subcoracoid fat triangle (asterisk). Image courtesy of the American Journal of Roentgenology (AJR)

News | Magnetic Resonance Imaging (MRI) | February 20, 2020
February 20, 2020 — Two ma...
Hyperfine Research, Inc. announced that it has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the world’s first bedside Magnetic Resonance Imaging (MRI) system

Hyperfine's point-of-care MRI wheels directly to the patient’s bedside, plugs into a standard electrical wall outlet, and is controlled via a wireless tablet. Photo courtesy of Business Wire

News | Magnetic Resonance Imaging (MRI) | February 12, 2020
February 12, 2020 — Hyperfine Research, Inc. announced that i
The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly

Image courtesy of GE Healthcare

News | Magnetic Resonance Imaging (MRI) | February 11, 2020
February 11, 2020 — The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly in the fo
Gadolinium-based contrast agents

UT Dallas faculty members who collaborated with Dr. Jeremiah Gassensmith (center, back), associate professor of chemistry and biochemistry, include Dr. Lloyd Lumata (left, back), assistant professor of physics, and Dr. Steven Nielsen, associate professor of chemistry. Chemistry graduate students in Gassensmith’s lab include (from left, front) Oliva Brohlin, Arezoo Shahrivarkevishahi and Laurel Hagge.

News | Contrast Media | February 06, 2020
February 6, 2020 — University of Texas at Dallas researchers
Qynapse, a medical technology company, announced that it received U.S. Food and Drug Administration (FDA) 510(k) clearance for its QyScore software
News | Information Technology | February 04, 2020
February 4, 2020 — Qynapse, a medical technology company, anno
RSNA 2019

RSNA 2019

Feature | Radiology Imaging | January 31, 2020 | By Greg Freiherr
The founder of Gonzo journalism thought
This image is of an 80 kg woman with a newly diagnosed IDH-wildtype glioblastoma

This image is of an 80 kg woman with a newly diagnosed IDH-wildtype glioblastoma. The quarter dose image on the left was obtained after the administration of 4 ml of MultiHance. Subsequently, an additional 12 ml of MultiHance was administered and the cumulative full dose image in the center was obtained. The image on the right was rendered following artificial intelligence processing of the 4 ml image using eGad genetic algorithms. This image has the quality of triple dose gadolinium even though only one quarter dose gadolinium was given.

Feature | Contrast Media Injectors | January 30, 2020 | By Matthew Kuhn, M.D., FACR
Gadolinium-based contrast agents (...