Technology | Nuclear Imaging | August 08, 2016

New MR-based Visualization Method Creates Real-time Brain Animations

Active areas of the brain light up in animation technique

Fraunhofer MEVIS, real-time brain animation, MRI, CT

Image courtesy of Fraunhofer MEVIS

July 28, 2016 — Researchers at the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen, Germany, are preparing to unveil a new visualization technology that creates real-time animations of the human brain. The method will premiere Oct. 1 in an exhibit at the Audioversum Science Center in Innsbruck, Austria.

The new method uses modern visualization technology called ‘physically based rendering’ in combination with medical image data and enriched with clinically relevant supplementary information.

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of the head. These images show which brain areas activate when we speak, see, hear, or touch.

Computer technology now is so powerful that photorealistic animations can even be produced with common PCs and modern graphic cards. Physically-based rendering plays an important role here, simulating how individual rays of light spread in specific scenery and how the environment influences each ray in reality. Mirrors reflect these rays; frosted glass weakens and scatters them; obstacles absorb them. As a result, walls, objects and people appear in naturally pleasing light, wine glasses mirror reflections, objects cast complex shadows. The scene appears as realistic as a photo or a video.

Hollywood directors and computer game programmers regularly use such systems and astound the public with increasingly lifelike computer images. Fraunhofer MEVIS experts use this technique for another purpose: Based on medical data from computed tomography (CT) or magnetic resonance (MR) images, they produce three-dimensional, moving images enriched with supplementary medical information. Their work results in moving images that visualize complex medical relationships in an aesthetical and instructive way. Initial applications include 2-D and 3-D movies, training materials and interactive installations. In the long term, the method can be used as an augmented visualization tool in medicine, for example, for diagnosis and operation planning.

Software systems that process medical image data from CT and MR scanners into three-dimensional images have existed for some time. “We took these anatomical images to another level with photorealistic, clinically relevant supplementary information that can be extracted from medical data with the help of special software,” explained Alexander Köhn, software architect at Fraunhofer MEVIS. “This supplementary information fuses with anatomical imagery.”

One example for this ‘Meta-realistic Medical Moving Images’ approach is an interactive image sequence that visualizes the functionality of the human brain. “We want to use the strong visual cognitive ability of the human to transfer complex interrelationships in an intuitive, correct and fast way,” said Bianka Hofmann, scientific communication specialist at Fraunhofer MEVIS. The researchers first produced high-resolution anatomical 3-D images of the brain with an MR scanner. Then, subjects performed different tasks in the scanner, such as reading texts, reciting poems, listening to music or viewing images. They switched the scanner to a specific mode, allowing it to capture, in high temporal resolution, the effect of blood supply in the brain during the different tasks.

Based on these functional MR images, statistical algorithms determine how intensively the different brain areas participate in the specific tasks. The auditory center on the side of the skull reacts when listening to music and the visual cortex on the back of the head is stimulated when observing images. The higher the intensity, the brighter this particular image volume becomes. When combined with anatomical MR data, images emerge in which the brain areas responsible for seeing or hearing start to glow. With the help of physically based rendering, these images appear extremely realistic.

On October 1, the technique will be unveiled at the AUDIOVERSUM in Innsbruck, Austria during the Long Night of Museums. The Science Center will present an exhibit designed by Fraunhofer MEVIS which allows visitors to discover the brain’s functionality interactively. In addition to the Oct. 1 exhibit, on Sept. 9-10, MEVIS Institute Director Horst Hahn will present sequences from the ‘Meta-realistic Medical Moving Images’ at the Ars Electronica Festival in Linz.

For more information: www.mevis.fraunhofer.de

Related Content

The cartilage in this MRI scan of a knee is colorized to show greater contrast between shades of gray.

The cartilage in this MRI scan of a knee is colorized to show greater contrast between shades of gray. Image courtesy of Kundu et al. (2020) PNAS

News | Artificial Intelligence | September 22, 2020
September 22, 2020 — Researchers at the University of Pitts...
A new report, Magnetic Resonance Imaging Equipment Market Size, Share & Industry Analysis, conducted by Fortune Business Insights, states that the magnetic resonance imaging (MRI) equipment market reached $7.24 billion in 2019 and is projected to reach $11.36 billion by 2027

Image courtesy of Siemens Healthineers

Feature | Magnetic Resonance Imaging (MRI) | September 21, 2020 | By Melinda Taschetta-Millane
A new report,...
Figure 1. Doppler flows in subpleural consolidation shows smoothly dilated branching arteries

Figure 1. Doppler flows in subpleural consolidation shows smoothly dilated branching arteries 

Feature | Radiology Imaging | September 17, 2020 | By Robert Bard, M.D. PC, DABR, FASLM
COVID-19 is routinely studied using...
 A cardiac MRI is effective in identifying inflammation of the heart muscle in athletes and can help determine when those who have recovered from COVID-19 can safely return to play in competitive sports, according to a new study by researchers at The Ohio State University Wexner Medical Center.

Getty Images

News | Cardiac Imaging | September 14, 2020
September 14, 2020 — A...
All intensive care unit equipment, including ventilators, pumps, and monitoring devices, as well as the point-of-care magnetic resonance image operator and bedside nurse, remained in the room. All equipment was operational during scanning.

All intensive care unit equipment, including ventilators, pumps, and monitoring devices, as well as the point-of-care magnetic resonance image operator and bedside nurse, remained in the room. All equipment was operational during scanning. Image courtesy of JAMA Neurology

News | Magnetic Resonance Imaging (MRI) | September 11, 2020
September 11, 2020 — A portable, low-field...
Six months after deployment, the no-show rate of the predictive model was 15.9%, compared with 19.3% in the preceding 12-month preintervention period — corresponding to a 17.2% improvement from the baseline no-show rate (p < 0.0001). The no-show rates of contactable and noncontactable patients in the group at high risk of appointment no-shows as predicted by the model were 17.5% and 40.3%, respectively (p < 0.0001).

Weekly outpatient MRI appointment no-show rates for 1 year before (19.3%) and 6 months after (15.9%) implementation of intervention measures in March 2019, as guided by XGBoost prediction model. Squares denote data points. Courtesy of the  American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Artificial Intelligence | September 10, 2020
September 10, 2020 — According to ARRS’
Vantage Galan with Advanced intelligent Clear-IQ Engine (AiCE) provides high-quality images and fast exam times

Coronal orbit images: Left original and right with AiCE.

News | Magnetic Resonance Imaging (MRI) | September 09, 2020
September 9, 2020
The global pediatric imaging market size is expected to reach $12.2 billion by 2027, registering a CAGR of 7.6% over the forecast period, according to a new report by Grand View Research, Inc.

Getty Images

News | Pediatric Imaging | August 26, 2020
August 26, 2020 — The global ...
AI-Rad Companion Prostate MR for Biopsy Support segments prostate for targeted biopsy under MRI and ultrasound fusion imaging

Image courtesy of Clinica Universidad de Navarra, Spain

News | Artificial Intelligence | August 19, 2020
August 19, 2020 — The Food and Drug Administration (FDA) has cleared two additional...