News | Magnetic Resonance Imaging (MRI) | May 31, 2017

New Metamaterial-Enhanced MRI Technique Tested on Humans

Dutch and Russian researchers say new material can potentially reduce image acquisition time, improve patient comfort and increase image quality

New Metamaterial-Enhanced MRI Technique Tested on Humans

May 31, 2017 — Scientists from the Netherlands and Russia designed and tested a new metasurface-based technology for enhancing the local sensitivity of magnetic resonance imaging (MRI) scanners on humans for the first time. The metasurface consists of thin resonant strips arranged periodically. Placed under a patient's head, it provided much higher signals from the local brain region.

The results, published in Scientific Reports, show that the use of metasurfaces can potentially reduce image acquisition time, thus improving comfort for patients, or acquire higher resolution images for better disease diagnosis.

MRI is a widely used medical technique for examination of internal organs, which can provide, for example, information on structural and functional damage in neurological, cardiovascular, in musculoskeletal conditions, as well as playing a major role in oncology. However, due to its intrinsically lower signal-to-noise ratio, an MRI scan takes much longer to acquire than a computed tomography or ultrasound scan. This means that a patient must lie motionless within a confined apparatus for up to an hour, resulting in significant patient discomfort, and relatively long lines in hospitals.

Specialists from Leiden University Medical Center in the Netherlands and ITMO University in Russia for the first time have acquired human MR-images with enhanced local sensitivity provided by a thin metasurface — a periodic structure of conducting copper strips. The researchers attached these elements to a thin flexible substrate and integrated them with close-fitting receiver coil arrays inside the MRI scanner.

"We placed such a metasurface under the patient's head, after that the local sensitivity increased by 50 percent. This allowed us to obtain higher image and spectroscopic signals from the occipital cortex. Such devices could potentially reduce the duration of MRI studies and improve its comfort for subjects," said Rita Schmidt, the first author of the paper and researcher at the Department of Radiology of Leiden University Medical Center.

The metasurface, placed between a patient and the receiver coils, enhances the signal-to-noise ratio in the region of interest. "This ratio limits the MRI sensitivity and duration of the procedure," noted Alexey Slobozhanyuk, research fellow at the Department of Nanophotonics and Metamaterials of ITMO University. "Often the scans must be repeated many times and the signals added together. Using this metasurface reduces this requirement. Conventionally, if now an examination takes twenty minutes, it may only need ten in the future. If today hospitals serve ten patients a day, they will be able to serve twenty with our development."

Alternatively, according to the scientists, the metasurface could be used to increase the image resolution. "The size of voxels, or 3-D-pixels, is also limited by the signal-to-noise ratio. Instead of accelerating the procedure, we can adopt an alternative approach and acquire more detailed images," said Andrew Webb, the leader of the project, professor of radiology at Leiden University Medical Center.

Until now, no one has shown integration of metamaterials into close-fitting receiver arrays because their dimensions were much too large. The novel ultra-thin design of the metasurface helped to solve this issue.

"Our technology can be applied for producing metamaterial-inspired ultra-thin devices for many different types of MRI scans, but in each case, one should firstly carry out a series of computer simulations as we have done in this work. One needs to make sure that the metasurface is appropriately coupled," concluded Schmidt.

For more information: www.nature.com/srep

Related Content

Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

Feature | ASTRO | October 20, 2018 | By Greg Freiherr
A linear accelerator combined with high-field MRI could soon be on the U.S. market. If U.S.