News | Coronavirus (COVID-19) | August 25, 2020

Researchers led by Göttingen University develop new three-dimensional imaging technique to visualize tissue damage in severe COVID-19

Researchers led by Göttingen University develop new three-dimensional imaging technique to visualize tissue damage in severe COVID-19

T Salditt, M Eckermann

Sections through the three-dimensional reconstruction volume (upper left, grey) around a pulmonary alveolus with hyaline membrane (lower left, yellow). On the right, the images are superimposed. In the centre is the air bubble (alveolus). The electron density is represented by different shades of grey. On the inside of the air bubble is a layer of proteins and dead cell residues, the "hyaline membrane". This deposit, which can be represented in its three-dimensional structure for the first time by the new method, reduces the gas exchange and leads to respiratory distress.


August 25, 2020 — Physicists at the University of Göttingen, together with pathologists and lung specialists at the Medical University of Hannover, have developed a three-dimensional imaging technique that enables high resolution and three-dimensional representation of damaged lung tissue following severe COVID-19. Using a special X-ray microscopy technique, they were able to image changes caused by the coronavirus in the structure of alveoli (the tiny air sacs in the lung) and the vasculature. The results of the study were published in the research journal eLife.

In severe COVID-19 disease, the researchers observed significant changes in the vasculature, inflammation, blood clots and "hyaline membranes", which are composed of proteins and dead cells deposited on the alveolar walls, which make gas exchange difficult or impossible. With their new imaging approach, these changes can be visualized for the first time in larger tissue volumes, without cutting and staining or damaging the tissue as in conventional histology. It is particularly well suited for tracing small blood vessels and their branches in three dimensions, localizing cells of the immune systems which are recruited to the inflammation sites, and measuring the thickness of the alveolar walls. Due to the three-dimensional reconstruction, the data could also be used to simulate gas exchange.

"Using zoom tomography, large areas of lung tissue embedded in wax can be scanned enabling detailed examination to locate particularly interesting areas around inflammation, blood vessels or bronchial tubes," said lead author Professor Tim Salditt from the Institute of X-ray Physics at the University of Göttingen. Since X-rays penetrate deep into tissue, this enables scientists to understand the relation between the microscopic tissue structure and the larger functional architecture of an organ. This is important, for example, to visualize the tree of blood vessels down to the smallest capillaries.

The authors foresee that this new X-ray technique will be an extension to traditional histology and histopathology, areas of study which go back to the 19th century when optical microscopes had just become available and pathologists could thereby unravel the microscopic origins of many diseases. Even today, pathologists still follow the same basic steps to prepare and investigate tissue: chemical fixation, slicing, staining and microscopy. This traditional approach, however, is not sufficient if three-dimensional images are required or if large volumes have to be screened, digitalized or analysed with computer programmes.

Three-dimensional imaging is well known from medical computerized tomography (CT). However, the resolution and contrast of this conventional technique are not sufficient to detect the tissue structure with cellular or sub-cellular resolution. Therefore, the authors used "phase contrast", which exploits the different propagation velocities of X-rays in tissue to generate an intensity pattern on the detector. Salditt and his research group at the Institute for X-ray Physics developed special illumination optics and algorithms to reconstruct sharp images from these patterns, an approach which they have now adapted for the study of lung tissue affected by severe progression of COVID-19. The Göttingen team could record lung tissue at scalable size and resolution, yielding both larger overviews and close-up reconstructions. Depending on the setting, their method can even yield structural details below the resolution of conventional light microscopy. To achieve this, the researchers used highly powerful X-ray radiation generated at the PETRAIII storage ring of the German Electron Synchrotron (DESY) in Hamburg.

As was the case when the modern microscope was invented 150 years ago, significant progress has resulted from collaboration between physicists and medical researchers. The interdisciplinary research team hopes that the new method will support the development of treatment methods, medicines to prevent or alleviate severe lung damage in Covid-19, or to promote regeneration and recovery. "It is only when we can clearly see and understand what is really going on, that we can develop targeted interventions and drugs," added Danny Jonigk (Medical University Hannover), who led the medical part of the interdisciplinary study.

For more information: www.uni-goettingen.de

Related Coronavirus Content:

VIDEO: Imaging COVID-19 With Point-of-Care Ultrasound (POCUS)

Cardiac Imaging Best Practices During the COVID-19 Pandemic

RSNA Publishes COVID-19 Best Practices for Radiology Departments

ASE Guidelines for the Protection of Echocardiography Providers During the COVID-19 Outbreak
New CT Scoring Criteria for Timely Diagnosis, Treatment of Coronavirus Disease

FDA Issues New Policy for Imaging Systems During COVID-19

VIDEO: COVID-19 Precautions for Cardiac Imaging —  Interview with Stephen Bloom, M.D.

A Review of Studies Cautions Against Chest CT for Coronavirus Diagnosis

New Research Finds Chest X-ray Not Reliable Diagnostic Tool for COVID-19

VIDEO: Radiology Industry Responding to COVID-19

University of Washington Issues Radiology Policies for COVID-19

VIDEO: Best Practices for Nuclear Cardiology During the COVID-19 Pandemic — Interview with Hicham Skali, M.D.

New Research Highlights Blood Clot Dangers of COVID-19

Survey Reveals Most Medical Practices are Now Using Telehealth Due to COVID-19

CMS Offers Recommendations on Reopening Healthcare in Areas of Low COVID-19 Cases

CT Provides Best Diagnosis for Novel Coronavirus (COVID-19)

Radiology Lessons for Coronavirus From the SARS and MERS Epidemics

Radiologists Describe Coronavirus CT Imaging Features

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

ACC COVID-19 recommendations for the cardiovascular care team

VIDEO: What Cardiologists Need to Know about COVID-19 — Interview with Thomas Maddox, M.D.

The Cardiac Implications of Novel Coronavirus


Related Content

News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
News | PET Imaging

June 18, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 18, 2024
arrow
News | Lung Imaging

June 18, 2024 — A new study led by American Cancer Society (ACS) researchers shows less than one-in-five eligible ...

Time June 18, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

June 17, 2024 — MRI has transformed neuroscience research over the past 50 years, but research participants have had to ...

Time June 17, 2024
arrow
News | Radiology Business

June 17, 2024 — Strategic Radiology welcomed Northwest Radiologists, Inc, a 20-radiologist practice based in Bellingham ...

Time June 17, 2024
arrow
Feature | Imaging Technology News - ITN

Dear Friends and Readers of ITN, Can you spare 3 minutes today to give us some feedback? Please share your insight with ...

Time June 17, 2024
arrow
News | Pediatric Imaging

June 13, 2024 — Cervical spine injuries in children are relatively rare but can have serious consequences, like ...

Time June 13, 2024
arrow
News | Digital Radiography (DR)

June 12, 2024 — Carestream launched its Image Suite MR 10 Software to help deliver a boost to productivity and ...

Time June 12, 2024
arrow
News | Neuro Imaging

June 12, 2024 — Brainet, a developer of cutting-edge diagnostic tools for assessing brain health, and SimonMed Imaging ...

Time June 12, 2024
arrow
News | SPECT-CT

June 11, 2024 — A newly developed radiotracer can generate high quality and readily interpretable images of cardiac ...

Time June 11, 2024
arrow
Subscribe Now