News | September 07, 2008

Neuroscientist Scans Brain For Clues on Best Time to Multitask

September 8, 2008 - In the study "Neural predictors of moment-to-moment fluctuations in cognitive flexibility" published in the latest issue of the Proceedings of the National Academy of Sciences, Andrew Leber, Ph.D., assistant professor of psychology at UNH, used functional magnetic resonance imaging (fMRI) to explain how the brain can predict when people are efficient multitaskers.

"We typically sacrifice efficiency when we multitask. However, there are times when we're quite good at it. Unfortunately, not much has been known about how to predict when these periods of time will occur," Leber said.

While having the study participants multitask, Leber and his colleagues at Yale University monitored their brain activity using fMRI. The research confirmed that multitasking is, on average, inefficient. However, the brain scans allowed the researchers to predict when people would be poor multitaskers and optimal multitaskers.

Most dramatically, the changes in performance were preceded by changes in the participants' brain activity patterns. Higher levels of activity in brain regions such as the basal ganglia, anterior cingulate cortex, prefrontal cortex, and parietal cortex corresponded to better multitasking performance.

"What is so striking about this result is that brain activity predicted multitasking performance before participants even knew whether they would be asked to switch or repeat tasks," Leber said.

Being able to predict when people are in optimal multitasking states raises tantalizing prospects for maximizing productivity in our daily lives, according to Leber. Ideally, we should reserve task juggling for known periods of optimal multitasking while doing repetitive tasks during known periods of poor multitasking.

Yet, while the brain imaging results reflect a critical step in helping us to better schedule our daily routine, they don't provide a truly practical solution quite yet. "Obviously, the average person can't bring an fMRI scanner to work," Leber said. "It may take more time before our research translates to real-world benefits for each of us."

Nevertheless, he believes that the current study represents a promising start.

"The fact that we are able to so rapidly switch from one task to another is no accident of nature, as it reflects an enhanced capacity to flexibly interact with our environment. And, it's to our benefit to exercise this remarkable skill from time to time, although the key might be to keep it in moderation," he said.

The research also may inform scientists' understanding of neurological disorders, such as Parkinson's disease, which is marked by degeneration of the basal ganglia. While it is commonly known that Parkinson's patients experience deficits in controlling movement, multitasking also is adversely affected.

"We've known that multitasking suffers when the physical makeup of the basal ganglia degenerates over time, as in Parkinson's disease," Leber said. "However, the current study shows that even in healthy adults, short-term changes in the basal ganglia also impact multitasking."

This observation opens new potential avenues in studying normal brain functioning to help provide a more complete picture of the disordered functioning in Parkinson's disease.

Leber's co-authors on the study were Marvin Chun, professor of psychology at Yale University, and Nicholas Turk-Browne, a graduate student at Yale. The research was funded by the National Institutes of Health.

Source: UNH Medial Relations

For more information: www.unh.edu/news

Related Content

Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

Feature | ASTRO | October 20, 2018 | By Greg Freiherr
A linear accelerator combined with high-field MRI could soon be on the U.S. market. If U.S.