News | Magnetic Resonance Imaging (MRI) | December 02, 2016

MRI Study Finds Cause of Visual Impairment in Astronauts

MRI brain scans reveal increase in cerebrospinal fluid volume that flattens the eyeballs during long space missions

astronauts, MRI study, visual impairment, RSNA 2016

Image courtesy of NASA

December 2, 2016 — A visual problem affecting astronauts who serve on lengthy missions in space is related to volume changes in the clear fluid found around the brain and spinal cord, according to new research. Findings were presented at the 2016 annual meeting of the Radiological Society of North America (RSNA), Nov. 27-Dec. 1 in Chicago.

Over the last decade, flight surgeons and scientists at NASA began seeing a pattern of visual impairment in astronauts who flew long-duration space missions. The astronauts had blurry vision, and further testing revealed, among several other structural changes, flattening at the back of their eyeballs and inflammation of the head of their optic nerves. The syndrome, known as visual impairment intracranial pressure (VIIP), was reported in nearly two-thirds of astronauts after long-duration missions aboard the International Space Station (ISS).

"People initially didn't know what to make of it, and by 2010 there was growing concern as it became apparent that some of the astronauts had severe structural changes that were not fully reversible upon return to earth," said study lead author Noam Alperin, Ph.D., professor of radiology and biomedical engineering at the University of Miami Miller School of Medicine in Miami, Fla.

Scientists previously believed the primary source of the problem was a shift of vascular fluid toward the upper body that takes place when astronauts spend time in the microgravity of space. But researchers led by Alperin recently investigated another possible source for the problem: cerebrospinal fluid (CSF), the clear fluid that helps cushion the brain and spinal cord while circulating nutrients and removing waste materials. The CSF system is designed to accommodate significant changes in hydrostatic pressures, such as when a person rises from a lying to sitting or standing position. However, the microgravity of space presents new challenges.

"On earth, the CSF system is built to accommodate these pressure changes, but in space the system is confused by the lack of the posture-related pressure changes," Alperin said.

To learn more about the role of CSF in spaceflight-induced visual impairment and eye changes, Alperin and colleagues performed high-resolution orbit and brain magnetic resonance imaging (MRI) scans before and shortly after spaceflights for seven long-duration mission ISS astronauts.

They compared results with those from nine short-duration mission space shuttle astronauts. Using advanced quantitative imaging algorithms, the researchers looked for any correlation between changes in CSF volumes and the structures of the visual system.

The results showed that, compared to short-duration astronauts, long-duration astronauts had significantly increased post-flight flattening of their eyeballs and increased optic nerve protrusion. Long-duration astronauts also had significantly greater post-flight increases in orbital CSF volume, or the CSF around the optic nerves within the bony cavity of the skull that holds the eye, and ventricular CSF volume — volume in the cavities of the brain where CSF is produced. The large post-spaceflight ocular changes observed in ISS crew members were associated with greater increases in intraorbital and intracranial CSF volume.

"The research provides, for the first time, quantitative evidence obtained from short- and long-duration astronauts pointing to the primary and direct role of the CSF in the globe deformations seen in astronauts with visual impairment syndrome," Alperin said.

There were no significant post-flight changes of gray matter volume or white matter volume in either group of astronauts.

Identifying the origin of the space-induced ocular changes is necessary, Alperin said, for the development of countermeasures to protect the crew from the ill effects of long-duration exposure to microgravity.

"If the ocular structural deformations are not identified early, astronauts could suffer irreversible damage," he noted. "As the eye globe becomes more flattened, the astronauts become hyperopic, or far-sighted."

According to Alperin, NASA is studying a number of possible measures to simulate the conditions that lead to VIIP and testing various countermeasures.

Co-authors on the study are Ahmet M. Bagci, Ph.D., Sang H. Lee, M.S., and Byron L. Lam, M.D.

For more information: www.rsna.org

Related Content

Bay Labs Announces New Echocardiography Guidance Software Data at ASE 2019 Scientific Sessions
News | Cardiovascular Ultrasound | June 20, 2019
Bay Labs announced that new data on the company’s first-of-its-kind deep learning investigational guidance software...
Third FDA Clearance Announced for Zebra-Med's AI Solution for Brain Bleed Alerts
Technology | Artificial Intelligence | June 19, 2019
Zebra Medical Vision announced it has received its third U.S. Food and Drug Administration (FDA) 510(k) clearance for...
LVivo EF Comparable to MRI, Contrast Echo in Assessing Ejection Fraction
News | Cardiovascular Ultrasound | June 19, 2019
DiA Imaging Analysis announced the presentation of two studies assessing the performance and accuracy of the company's...
New Data Demonstrates Safety Profile of GammaTile Therapy for Various Brain Tumors
News | Brachytherapy Systems | June 18, 2019
GT Medical Technologies Inc. announced the presentation of clinical data from a prospective study of GammaTile Therapy...
Black Men Less Likely to Adopt Active Surveillance for Low-Risk Prostate Cancer
News | Prostate Cancer | June 17, 2019
A new study reveals black men are less likely than white men to adopt an active surveillance strategy for their...
International Working Group Releases New Multiple Myeloma Imaging Guidelines

X-ray images such as the one on the left fail to indicate many cases of advanced bone destruction caused by multiple myeloma, says the author of new guidelines on imaging for patients with myeloma and related disorders. Image courtesy of Roswell Park Comprehensive Cancer Center.

News | Computed Tomography (CT) | June 17, 2019
An International Myeloma Working Group (IMWG) has developed the first set of new recommendations in 10 years for...
SyMRI Software Receives FDA Clearance for Use With Siemens MRI Systems
Technology | Magnetic Resonance Imaging (MRI) | June 14, 2019
SyntheticMR announced U.S. Food and Drug Administration (FDA) clearance for clinical use of its SyMRI Image and SyMRI...
A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse

Figure 1. A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse from Amsterdam Ph.D. researcher Gustav Strijkers.

News | Magnetic Resonance Imaging (MRI) | June 07, 2019
The Amsterdam University Medical Center has won MR Solutions’ Image of the Year 2019 award for the best molecular...
Study Identifies MRI-Guided Radiation Therapy as Growing Market Segment
News | Image Guided Radiation Therapy (IGRT) | June 06, 2019
Revenues from the magnetic resonance imaging (MRI)-guided radiation therapy systems market exceeded $220 million in...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...