News | August 12, 2009

MRI Simulation of Blood Flow Helps Plan Child's Heart Surgery

August 12, 2009 – Researchers at the Georgia Institute of Technology, collaborating with pediatric cardiologists and surgeons at The Children's Hospital of Philadelphia, have developed a tool for virtual surgery that allows heart surgeons to view the predicted effects of different surgical approaches by manipulating 3D cardiac MRIs of a patient's specific anatomy.

Physicians can compare how alternative approaches affect blood flow and expected outcomes and can select the best approach for each patient before entering the operating room.

"This tool helps us to get the best result for each patient," said coauthor Mark A. Fogel, M.D., an associate professor of cardiology and radiology, and director of cardiac MRI at The Children's Hospital of Philadelphia. "The team can assess the different surgical options to achieve the best blood flow and the optimum mixture of blood, so we can maximize the heart's energy efficiency."

In the August issue of the Journal of the American College of Cardiology: Cardiovascular Imaging, the researchers describe the surgical planning methodology, detailing how the tool helped them to plan the surgery of a four-year-old girl who was born with just one functional ventricle, or pumping chamber, instead of two.

Two in every 1,000 babies in the United States are born with this type of single ventricle heart defect. These children typically suffer from low levels of oxygen in their tissues because their oxygen-rich and oxygen-poor blood mix in their one functional ventricle before being redistributed to their lungs and body.

To correct this, the children undergo a series of three open-heart surgeries, called the staged Fontan reconstruction, to reshape the circulation in a way that allows oxygen-poor blood to flow from the limbs directly to the lungs without going through the heart. While these vascular modifications can eliminate blood mixing and restore normal oxygenation levels, surgeons and cardiologists must ensure that the lungs will receive proper amounts of blood and nutrients after the surgery so that normal development occurs.

"Preoperatively determining the Fontan configuration that will achieve balanced blood flow to the lungs is very difficult and the wide variety and complexity of patients' anatomies requires an approach that is very specific and personalized," said Ajit Yoganathan, Ph.D., regents' professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "With our surgical planning framework, the physicians gain a better understanding of each child's unique heart defect, thus improving the surgery outcome and recovery time."

The patient described in this paper, Amanda Mayer, age 4, of Staten Island, N.Y., had previously undergone all three stages of the Fontan procedure at The Children's Hospital of Philadelphia, but developed severe complications. Her oxygen saturation was very low, at only 72 percent, compared to normal levels of at least 95 percent. This is an indication of the possibility of abnormal connections between the veins and arteries in one of her lungs. Normally, the liver releases hormonal factors that prevent these abnormal connections, so the presence of the malformations indicated a low supply of hepatic blood to the lung.

To improve the distribution of these hormonal factors to both lungs, the surgeons needed to reoperate and reconfigure the patient's cardiovascular anatomy. Georgia Tech's surgical planning framework helped Thomas L. Spray, M.D., chief of the division of cardiothoracic surgery at Children's Hospital, to determine the optimal surgical option.

"MRI acquires images of the child's heart without using radiation," said Dr. Spray. "Then we use the computerized technology to model different connections to simulate optimum blood flow characteristics, before we perform the surgery."

The image-based surgical planning consisted of five major steps: acquiring magnetic resonance images of the child's heart at different times in the cardiac cycle, modeling the preoperative heart anatomy and blood flow, performing virtual surgeries, using computational fluid dynamics to model the proposed postoperative flow, and measuring the distribution of liver-derived hormonal factors and other clinically relevant parameters as feedback to the surgeon.

Dr. Fogel collected three different types of magnetic resonance images, and Yoganathan, along with graduate students Kartik Sundareswaran and Diane de Zelicourt, generated a three-dimensional model of the child's cardiovascular anatomy. From the model they reconstructed the three-dimensional pre-operative flow fields to understand the underlying causes of the malformations.

For this particular patient, the team saw a highly uneven flow distribution -- the left lung was receiving about 70 percent of the blood pumped out by the heart, but only five percent of the hepatic blood. Both observations suggested left lung malformations, but closer examination of the flow structures in that particular patient revealed that the competition between different vessels at the center of the original Fontan connection effectively forced all hepatic factors into the right lung even though a vast majority of total cardiac output went to the left lung.

To facilitate the design of the surgical options that would correct this problem, Jarek Rossignac, Ph.D., a professor in Georgia Tech's School of Interactive Computing, developed Surgem, an interactive geometric modeling environment that allowed the surgeon to use both hands and natural gestures in three-dimensions to grab, pull, twist and bend a 3D computer representation of the patient's anatomy. After analyzing the three-dimensional reconstruction of the failing cardiovascular geometry, the team considered three surgical options.

The research team then performed computational fluid dynamics simulations on all three options to investigate for each how well blood would flow to the lungs and the amount of energy required to drive blood through each connection design. These measures of clinical performance allowed the cardiologists and surgeons to conduct a risk/benefit analysis, which also included factors such as difficulty of completion and potential complications.

Of the three choices, Spray favored the option that showed a slightly higher energy cost but exhibited the best performance with regards to hepatic factor distribution to the left and right lungs. Five months after the surgery, Mayer showed a dramatic improvement in her overall clinical condition and oxygen saturation levels, which increased from 72 to 94 percent. Mayer is breathing easier and is now able to play actively like other children, according to her cardiologist, Donald Putman, M.D., of Staten Island, N.Y.

"The ability to perform this work is a team effort," Dr. Fogel added. "State-of-the-art three-dimensional cardiac MRI married to modern biomedical engineering and applied anatomy and physiology enabled this approach. With the advanced pediatric cardiothoracic surgery we have here at The Children's Hospital of Philadelphia, patients can benefit from this new method."

For more information: www.chop.edu

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...
Weight Loss Through Exercise Alone Does Not Protect Knees
News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Obese people who lose a substantial amount of weight can significantly slow down the degeneration
Neurofeedback Shows Promise in Treating Tinnitus

The standard approach to fMRI neurofeedback. Image courtesy of Matthew Sherwood, Ph.D.

News | Magnetic Resonance Imaging (MRI) | January 11, 2018
January 11, 2018 — Researchers using...
Male Triathletes May Be Putting Their Heart Health at Risk
News | Cardiac Imaging | January 09, 2018
Competitive male triathletes face a higher risk of a potentially harmful heart condition called myocardial fibrosis,...
State-of-the-Art MRI Technology Bypasses Need for Biopsy
News | Magnetic Resonance Imaging (MRI) | January 09, 2018
January 9, 2018 – The most common type of tumor found in the kidney is generally quite small (less than 1.5 in).
Overlay Init