News | Neuro Imaging | September 12, 2016

MRI Scan May Help Diagnose Chronic Traumatic Encephalopathy

UCLA report finds new software tool could help determine whether a living person has CTE, which has been confirmable only in autopsies

UCLA, chronic traumatic encephalopathy, CTE detection, MRI

Comparing a PET scan of an NFL player’s brain, left, and an MRI of a former high school football player’s brain shows similar suspected CTE pathology in the midbrain. Image courtesy of UCLA Health.

September 12, 2016 — University of California Los Angeles (UCLA) doctors have found what may be an earlier and easier way to diagnose chronic traumatic encephalopathy (CTE). The disorder is thought to affect some former football players and others with a history of repetitive brain trauma.

Using a new software tool for analyzing magnetic resonance imaging (MRI) scans, the researchers detected the shrinkage of several key brain regions in a former football player with cognitive problems. The same pattern of brain changes is commonly seen in CTE cases that have been confirmed by autopsies after a person’s death.

While the findings from this single case report are preliminary, they raise the possibility that MRI scans could be used to diagnose CTE and related conditions in living people. At present, CTE can be diagnosed only by direct examination of the brain during an autopsy.

“Having an MRI-based technique for detecting this pattern of brain changes would help us a lot in assessing the brain health of athletes and others with histories of concussions,” said David Merrill, M.D., Ph.D., assistant clinical professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA.

Along with its potential benefits in diagnosing patients in the clinic, the MRI scanning technique could also help speed research of CTE, helping scientists better understand its prevalence in the population and in studying potential therapies, said Cyrus Raji, M.D., Ph.D., a senior resident in radiology at Ronald Reagan UCLA Medical Center.

Raji and Merrill are lead authors of the report, which appears online in the American Journal of Geriatric Psychiatry.

The case’s patient, with the pseudonym “Bob Smith,” is a former high school fullback who also saw action on defense and special teams, meaning he was on the field for much of entire games. During his three-year playing career Smith received hundreds of blows to the head, including at least one concussion in which he was knocked unconscious and, after regaining consciousness, jogged to the wrong sideline.

After finishing college, Smith married, raised a family and started a business with his wife. In his late 30s, he began to experience mood swings and difficulties with attention and impulse control. Eventually his problems affected his ability to work. He sought medical advice and was diagnosed with attention deficit hyperactivity disorder and bipolar disorder. Earlier this year, he sought medical help at Merrill’s UCLA Psychiatry Cognitive Health Clinic and Research Program. Standard neuropsychological testing confirmed Smith’s impairments in attention, impulse control and other measures of executive function, although it indicated that his memory was normal. An MRI scan showed no evidence of Alzheimer’s, stroke or dementia.

The MRI scan did reveal a few small lesions consistent with Smith’s history of brain trauma. Merrill and Raji also used a new U.S. Food and Drug Administration (FDA)-cleared MRI software analysis tool called Neuroreader to measure the volumes of 45 different regions of the patient’s brain.

“From one scan it can tell you which of those regions is abnormally large or small compared to a large database of normative brain volume,” Raji said of the software analysis tool. “Most importantly, we were able to see the progression of volume loss over time, because the patient had had another MRI done in 2012.”

The analysis revealed abnormally low volumes for Smith’s brainstem, his ventral diencephalon and frontal lobes. The shrinkage in these volumes was worse in the later scan, suggesting a progression of disease. On the whole Smith’s brain lost about 14 percent of its total gray-matter volume (the volume taken up by brain cells, not nerve fibers) during the four-year interval.

“The specific areas that were abnormally low in their volumes helped us understand that this patient’s cognitive symptoms were likely due to his history of traumatic brain injury,” Raji said.

Researchers are trying to develop other methods for diagnosing CTE in the living, including positron emission tomography (PET) scans based on radioactive tracers that bind to tau aggregates. But an MRI-based method, which uses no radioactive materials, would be safer and less expensive, Merrill said.

Merrill and colleagues now hope to do larger studies to analyze MRI data for people with histories of head trauma, which would help determine whether the technique is broadly useful in detecting CTE.

Other authors of the study included Jorge Barrio and Gary Small, M.D., of UCLA, and Bennet Omalu, M.D., of UC Davis.

For more information: www.ajgponline.org

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 A brief article from Henry Ford Health System in Detroit, published today in Radiology, reports on the first presumptive case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy.

A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Image courtesy of the Radiological Society of North America (RSNA)

News | Coronavirus (COVID-19) | March 31, 2020
March 31, 2020 — A brief article fr
A University of Colorado Cancer Center study published in the Journal of the National Cancer Institute shows an important predictor of PET-CT use

Rustain Morgan, M.D., and colleagues show racial/ethnic disparities in use of important imaging during lung cancer diagnosis. Photo courtesy of University of Colorado Cancer Center

News | PET-CT | March 12, 2020
March 12, 2020 — The use of PET-CT
SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories

Example: SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories ((a), fatty; (b), scattered; (c), heterogeneously dense; (d), extremely dense). Note the quantitative scale indicating that absolute measurements are obtained. Image courtesy of MDPI

News | Breast Imaging | March 10, 2020
March 10, 2020 — ...
Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

News | Computed Tomography (CT) | March 06, 2020
March 6, 2020 — Researchers at the National Institutes of Health a
M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers

M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers. (c) University of Maryland Greenebaum Comprehensive Cancer Center

News | Prostate Cancer | March 05, 2020
March 5, 2020 — Using a combination of...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la