News | Neuro Imaging | October 18, 2017

MRI May Predict Neurological Outcomes for Cardiac Arrest Survivors

Patients showing greater connection between neural networks had greater potential for positive outcomes; findings could help guide future treatment

MRI May Predict Neurological Outcomes for Cardiac Arrest Survivors

October 18, 2017 — Magnetic resonance imaging (MRI)-based measurements of the functional connections in the brain can help predict long-term recovery in patients who suffer neurological disability after cardiac arrest, according to a clinical study appearing online in the journal Radiology.

Cardiac arrest, or abrupt loss in heart function, is a common and often deadly occurrence that affects hundreds of thousands of people every year in the United States alone, according to the American Heart Association. Many patients who survive end up with severe neurological disabilities, as the temporary loss of oxygenated blood flow to the brain can result in widespread neuronal cell death.

“Current methods to predict future levels of function for these survivors have limited accuracy,” said study lead author Robert D. Stevens, M.D., from Johns Hopkins University School of Medicine in Baltimore. “We need better methods to help clinicians understand the magnitude of these injuries and make more accurate predictions on recovery, thereby enabling more informed decision-making.”

For the study, Stevens and colleagues used advanced MRI neuro imaging techniques like diffusion tensor imaging and resting-state functional MRI (fMRI) to focus on the brain’s large-scale functional integration. This “network of networks,” or connectome, represents the ensemble of different neuronal populations in the brain that work together to perform tasks.

The researchers assessed the brain’s functional connectivity in 46 patients who were in a coma following cardiac arrest. The imaging, performed within two weeks of cardiac arrest, included studies of brain structure and function. Functional imaging focused on four well-characterized networks in the brain, including the default mode network, which is active when a person is not engaged in a specific task, and the salience network, a collection of brain regions that select which stimuli are deserving of our attention.

One year after the patients’ cardiac arrests, the researchers assessed the patients with the Cerebral Performance Category Scale, a commonly used measure of neurological function following cardiac arrest. Eleven patients had favorable outcomes. Functional connectivity was stronger in those who achieved higher levels of independence at one year compared with those who were heavily dependent. The changes in functional connectivity between networks predicted outcomes with greater accuracy than any of the MRI structural measures tested.

“This is game-changing information about what happens in the brains of people who suffer cardiac arrest,” Stevens said. “We realize that network architectures can be selectively disrupted in this setting.”

A key predictor of outcomes was the interaction between the brain’s default mode and salience networks. These two networks are normally anti-correlated, meaning that as the default mode network becomes more active, activity is reduced in the salience network, and vice versa. When researchers compared the brain imaging results of patients who had favorable outcomes with those who did not, they noticed a stark difference.

“Anti-correlation was preserved in patients who recovered and abolished in those who did not,” Stevens said. “Relative preservation of this anti-correlation was the most robust signal of a favorable outcome.”

The results indicate that connectivity measures could be early markers of long-term recovery potential in patients with cardiac arrest-related brain damage, the researchers said.

While researchers don’t expect connectome analysis with MRI to be the single “magic bullet” solution to predicting outcomes, it could increase the confidence that clinicians have in communicating with patients’ families in the wake of cardiac arrest. Additionally, fMRI could aid in the development of therapeutic interventions for neurologically disabled patients.

“Connectome studies have the potential to change not only outcome prediction, but to guide treatment as well,” Stevens said.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

Bay Labs Announces New Echocardiography Guidance Software Data at ASE 2019 Scientific Sessions
News | Cardiovascular Ultrasound | June 20, 2019
Bay Labs announced that new data on the company’s first-of-its-kind deep learning investigational guidance software...
Third FDA Clearance Announced for Zebra-Med's AI Solution for Brain Bleed Alerts
Technology | Artificial Intelligence | June 19, 2019
Zebra Medical Vision announced it has received its third U.S. Food and Drug Administration (FDA) 510(k) clearance for...
LVivo EF Comparable to MRI, Contrast Echo in Assessing Ejection Fraction
News | Cardiovascular Ultrasound | June 19, 2019
DiA Imaging Analysis announced the presentation of two studies assessing the performance and accuracy of the company's...
New Data Demonstrates Safety Profile of GammaTile Therapy for Various Brain Tumors
News | Brachytherapy Systems | June 18, 2019
GT Medical Technologies Inc. announced the presentation of clinical data from a prospective study of GammaTile Therapy...
Black Men Less Likely to Adopt Active Surveillance for Low-Risk Prostate Cancer
News | Prostate Cancer | June 17, 2019
A new study reveals black men are less likely than white men to adopt an active surveillance strategy for their...
International Working Group Releases New Multiple Myeloma Imaging Guidelines

X-ray images such as the one on the left fail to indicate many cases of advanced bone destruction caused by multiple myeloma, says the author of new guidelines on imaging for patients with myeloma and related disorders. Image courtesy of Roswell Park Comprehensive Cancer Center.

News | Computed Tomography (CT) | June 17, 2019
An International Myeloma Working Group (IMWG) has developed the first set of new recommendations in 10 years for...
SyMRI Software Receives FDA Clearance for Use With Siemens MRI Systems
Technology | Magnetic Resonance Imaging (MRI) | June 14, 2019
SyntheticMR announced U.S. Food and Drug Administration (FDA) clearance for clinical use of its SyMRI Image and SyMRI...
A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse

Figure 1. A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse from Amsterdam Ph.D. researcher Gustav Strijkers.

News | Magnetic Resonance Imaging (MRI) | June 07, 2019
The Amsterdam University Medical Center has won MR Solutions’ Image of the Year 2019 award for the best molecular...
Study Identifies MRI-Guided Radiation Therapy as Growing Market Segment
News | Image Guided Radiation Therapy (IGRT) | June 06, 2019
Revenues from the magnetic resonance imaging (MRI)-guided radiation therapy systems market exceeded $220 million in...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...