News | March 09, 2010

MIT Researchers to Use MEG for Neurological Studies

Elekta's Neuromag system for magnetoencephalography.

March 9, 2010 - Researchers at Massachusetts Institute of Technology (MIT) will use a new magnetoencephalography (MEG) to explore brain function, including normal cognition in children and adults, as well as the neural basis of autism, depression, schizophrenia, and other brain disorders.

MEG can detect the very weak magnetic fields arising from electrical activity in the brain, and allows researchers to monitor the timing of brain activity with millisecond precision. MIT, a leading centers for neuroscience research, will use the Elekta Neuromag to study the brain at the molecular and cellular level to human cognition and computational modeling.

The Elekta Neuromag system will be housed in the Martinos Imaging Center within the Brain and Cognitive Sciences complex, home to the McGovern Institute of Brain Research, the Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences. Delivery of the system is expected in June and is expected to be operational by the fall of 2010.

Professor John Gabrieli, director of the Martinos Imaging Center, said he intends to use MEG to study the neural and genetic basis of autism, dyslexia and other developmental disorders. By combining MEG with other brain imaging modalities, such as magnetic resonance imaging (MRI) and electroencephalography (EEG), Dr. Gabrieli plans to search for differences in brain activation in subjects with different genetic variants that have been linked to these conditions. “Our goal is to correlate the changes in brain function with genetic risk factors, and in turn identify categories of patients for whom optimal treatment strategies could be tailored,” he said.

The Director of the McGovern Institute Professor Robert Desimone will study the neural basis of attention. Animal studies have indicated that high-frequency brain waves known as gamma oscillations become synchronized across brain areas as these areas communicate with each other to control attention. Extending this work to humans using MEG to study as schizophrenia, Desimone will examine how gamma oscillations are disrupted in schizophrenia, which may help explain why people with schizophrenia often experience difficulty organizing their thoughts and perceptions into a coherent and meaningful whole.

Professor Christopher Moore, an investigator at the McGovern Institute, will use the system to investigate how the cerebral cortex processes rapid sensory information. Based on his work on cortical circuitry, Moore has developed a biophysical model to account for the MEG signal. “Our aim is to link the signals that we can record from human subjects to the underlying brain mechanisms that give rise to those signals,” he said.

For more information: web.mit.edu/mitmri, mcgovern.mit.edu and www.elekta.com

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init