News | Proton Therapy | May 04, 2017

Mevion and medPhoton Bring Advanced Cone Beam CT Imaging to Proton Therapy

Mevion to integrate in-room CBCT imaging with its Mevion S250 Series

Mevion and medPhoton Bring Advanced Cone Beam CT Imaging to Proton Therapy

May 4, 2017 — Mevion Medical Systems announced a strategic agreement with medPhoton GmbH to integrate ImagingRing, an innovative cone beam computed tomography (CBCT) system for volumetric image guidance, with the Mevion S250i with Hyperscan, Mevion’s pencil-beam scanning proton therapy system. The new CBCT offering will debut at the 36th annual meeting of the European Society for Radiotherapy & Oncology (ESTRO), May 5-9 in Vienna, Austria.

By adding fully integrated cone beam imaging to Mevion’s suite of in-room image guidance capabilities, Mevion and medPhoton provide simplicity of workflow and more precise and efficient treatment delivery.

CBCT imaging is an important capability in the treatment room to precisely position patients for pencil beam proton therapy. In-room CBCT, when integrated to Mevion’s Verity image-guided patient positioning system, will enable users to treat patients with the latest image-guided radiation therapy (IGRT) technology and deliver high-precision positioning and adaptive proton therapy in a simple workflow. Clinicians will be able to track anatomical changes throughout the course of treatment and adapt the treatment plan as needed to ensure accurate proton dose delivery.

ImagingRing will be fully integrated into optimized workflows with the Mevion S250 Series and Verity Patient Positioning System. Together with Mevion’s 6D robotic treatment couch, it enables detailed imaging of the tumor and organs at risk with the patient positioned at the treatment isocenter.

The Mevion S250i proton therapy system is not yet U.S. Food and Drug Administration (FDA)-cleared.

For more information: www.mevion.com, www.medphoton.at

Related Content

Accuray Incorporated announced that Mercy Hospital St. Louis continues to demonstrate its commitment to improving patient outcomes with the installation of the first CyberKnife M6 System in Missouri at their state-of-the-art David C. Pratt Cancer Center
News | Stereotactic Body Radiation Therapy (SBRT) | February 27, 2020
February 27, 2020 — Accuray Incorporated announced that Mercy
In a study of more than 1,000 patients published in the journal Radiology, chest CT outperformed lab testing in the diagnosis of 2019 novel coronavirus disease (COVID-19) #COVID19 #COVID-2019 #2019nCoV #COVID-19

Chest CT images of a 29-year-old man with fever for 6 days. RT-PCR assay for the SARS-CoV-2 using a swab sample was performed on Feb. 5, 2020, with a positive result. (A column) Normal chest CT with axial and coronal planes was obtained at the onset. (B column) Chest CT with axial and coronal planes shows minimal ground-glass opacities in the bilateral lower lung lobes (yellow arrows). (C column) Chest CT with axial and coronal planes shows increased ground-glass opacities (yellow arrowheads). (D column) Chest CT with axial and coronal planes shows the progression of pneumonia with mixed ground-glass opacities and linear opacities in the subpleural area. (E column) Chest CT with axial and coronal planes shows the absorption of both ground-glass opacities and organizing pneumonia. Image courtesy of Radiology

News | Computed Tomography (CT) | February 26, 2020 | Melinda Taschetta-Millane and Dave Fornell
February 26, 2020 — In a study of m
 over the course of a week and a half #coronavirus #COVID19 #COVID-2019 #2019nCoV

29-year old male with unknown exposure history, presenting with fever and cough, ultimately requiring intensive care unit admission. (a) Axial thin-section non-contrast CT scan shows diffuse bilateral confluent and patchy ground-glass (solid arrows) and consolidative (dashed arrows) pulmonary opacities. (b) The disease in the right middle and lower lobes has a striking peripheral distribution (arrow). Image courtesy of Radiology 

News | Computed Tomography (CT) | February 26, 2020
February 26, 2020 — Mount Sinai Health System physicians—the
Images in a 41-year-old woman who presented with fever and positive polymerase chain reaction assay for the 2019 novel coronavirus (2019-nCoV) #coronavirus #nCoV2019 #2019nCoV #COVID19

Images in a 41-year-old woman who presented with fever and positive polymerase chain reaction assay for the 2019 novel coronavirus (2019-nCoV). Three representative axial thin-section chest CT images show multifocal ground glass opacities without consolidation. Three-dimensional volume-rendered reconstruction shows the distribution of the ground-glass opacities (arrows). Image courtesy of the Radiological Society of North America (RSNA)

News | Radiology Imaging | February 25, 2020
February 24, 2020 — The U.S.
Carestream’s state-of-the-art OnSight 3D Extremity System
News | Computed Tomography (CT) | February 25, 2020
February 25, 2020 — Carestream’s state-of-the-art...
An axial CT image obtained without intravenous contrast in a 36‐year‐old male (Panel A) shows bilateral ground‐glass opacities in the upper lobes with a rounded morphology (arrows). #coronavirus #nCoV2019 #2019nCoV #COVID19

An axial CT image obtained without intravenous contrast in a 36‐year‐old male (Panel A) shows bilateral ground‐glass opacities in the upper lobes with a rounded morphology (arrows). Image courtesy of Radiology Online.

News | Computed Tomography (CT) | February 20, 2020
February 20, 2020 — In new research
Chest CT imaging of patient. #coronavirus #nCoV2019 #2019nCoV #COVID19

Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. This image is part of the original research, Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR, published Feb. 19, 2020, in Radiology Online.

News | Computed Tomography (CT) | February 19, 2020
February 19, 2020 — In new research
Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.
Novel Coronavirus 2019-nCoV Pneumonia. #coronavirus #nCoV2019 #2019nCoV #COVID19

Image by _freakwave_ from Pixabay 

News | Computed Tomography (CT) | February 16, 2020
February 16, 2020 — The following statement was issued by the U.S.