News | Neuro Imaging | June 30, 2016

Methylene Blue Shows Promise for Improving Short-Term Memory

MRI study reveals increased response in key brain areas, suggesting potential treatment for a variety of cognitive impairments

methylene blue, short-term memory, MRI study, University of Texas Health Science Center, Timothy Q. Duong

June 30, 2016 — A single oral dose of methylene blue results in an increased magnetic resonance imaging (MRI)-based response in brain areas that control short-term memory and attention, according to a new study published online in the journal Radiology.

Methylene blue is used to treat methemoglobinemia, a blood disorder in which oxygen is unable to release effectively to body tissues, and as a surgical stain.

Animal studies have shown a single low dose of methylene blue enhances long-term contextual memory — the conscious recall of the source and circumstances of a specific memory — and extinction memory, a process in which a conditioned response from stimuli gradually diminishes over time.

“Although the memory-enhancing effects of methylene blue were shown in rodents in the 1970s, the underlying neuronal changes in the brain responsible for memory improvement and the effects of methylene blue on short-term memory and sustained-attention tasks have not been investigated,” said study author Timothy Q. Duong, Ph.D., from the University of Texas Health Science Center at San Antonio, Texas. “Our team decided to conduct the first multi-modal MRI study of methylene blue in humans.”

Twenty-six healthy participants, between the ages of 22 and 62, were enrolled in a double-blinded, randomized, placebo-controlled clinical trial to measure the effects of methylene blue on the human brain during working-memory and sustained-attention tasks. This study was approved by the local ethical committee.

The participants underwent functional MRI (fMRI) before and one hour after low-dose methylene blue or placebo administration to evaluate the potential effects of methylene blue on cerebrovascular reactivity during tasks. Mean cerebral blood flow was measured pre- and post-intervention.

The results showed methylene blue increased response in the bilateral insular cortex — an area deep within the brain associated with emotional responses — during a task that measured reaction time to a visual stimulus. The fMRI results also showed an increased response during short-term memory tasks involving the brain’s prefrontal cortex (which controls processing of memories, the parietal lobe (primarily associated with the processing of sensory information) and the occipital cortex (the visual processing center of the brain). In addition, methylene blue was associated with a 7 percent increase in correct responses during memory retrieval.

The findings suggest that methylene blue can regulate certain brain networks related to sustained attention and short-term memory after a single oral low dose.

“This work certainly provides a foundation for future trials of methylene blue in healthy aging, cognitive impairment, dementia and other conditions that might benefit from drug-induced memory enhancement,” Duong said.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...

Image courtesy of Philips Healthcare

Feature | Magnetic Resonance Imaging (MRI) | September 06, 2018 | By Melinda Taschetta-Millane
According to the Prescient & Strategic Intelligence report, “Global Magnetic Resonance Imaging (MRI) Market Size,...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...