News | Stroke | March 12, 2019

Iron Measurements With MRI Reveal Stroke's Impact on Brain

MRI technique called R2* mapping may reveal stroke damage remote from the infarct

Iron Measurements With MRI Reveal Stroke's Impact on Brain

Images show illustrative examples of visual R2? modifications within substantia nigra (SN) at baseline (24-72 h) and follow-up (1 y) in striatum (participants 1 and 2) and control groups (participants 3 and 4). Image courtesy of the Radiological Society of North America (RSNA).

March 12, 2019 — A simple magnetic resonance imaging (MRI) method that measures iron content can provide a more comprehensive picture of the consequences of stroke-related damage to the brain, according to a study published in the journal Radiology.1 Researchers said the findings point to a role for MRI brain iron measurements in monitoring recovery from stroke.

Strokes can result in significant impairments caused by infarctions, or the death of tissue due to the brain’s blood supply being blocked by a clot. Long-term outcomes may also be affected by delayed degeneration of brain areas away from the location of the stroke. One such area is the substantia nigra (SN), a structure of the midbrain that is connected with other parts of the brain in several complex networks.

“Overall, the SN is strongly involved in motor control, but also in regulation of emotions, cognition and motivation,” said study co-author Thomas Tourdias, M.D., Ph.D., professor of radiology at the Centre Hospitalier Universitaire in Bordeaux, France. “Usually, stroke doesn’t directly affect the SN but, by interrupting circuits, stroke can induce secondary degeneration of that area.”

Prior to the new study, this secondary degeneration of SN had only been seen on post-mortem brain examinations. Imaging on a living person has not been able to capture the long-term degeneration, so for the new study, Tourdias and colleagues employed an MRI technique that measures iron content in the brain. Iron is important for normal brain function, but an excess of it has been linked to neurodegeneration. Iron is released from dying neurons and iron-rich immune cells present around injured neurons. The excess iron further accelerates neurodegeneration through a process called oxidative stress.

The researchers used an MRI technique called R2* mapping to evaluate 181 patients who had suffered a stroke. One year after a baseline evaluation, some of the patients showed higher iron content in the SN. This high iron content was associated with worse long-term outcomes, particularly when it was found on the same side of the brain that the stroke occurred.

“We showed that imaging of iron can also be used to image degeneration remotely from stroke in disconnected areas,” Tourdias said. “This finding could be clinically useful because it shows that a simple magnetic resonance imaging method such as R2* can provide a more comprehensive picture of the consequences of an infarct.”

The results suggest that R2* mapping may be added to the follow-up MRI after stroke to monitor neurodegeneration, Tourdias said, by assessing iron levels in the SN. More generally, the findings lend support to the use of iron imaging as a marker for neurodegeneration, an idea that is already being explored for neurodegenerative diseases like Parkinson’s disease. Therapies that prevent iron deposition could potentially be used to slow or stop the degeneration of the neurons.

“We are currently investigating this direction,” Tourdias said. “Our imaging approach could become crucial in the clinic if modulation of iron develops as a neuroprotective strategy in the future.”

For more information: www.pubs.rsna.org/journal/radiology

Reference

1. Linck P.A., Kuchcinski G., Munsch F., et al. Neurodegeneration of the Substantia Nigra after Ipsilateral Infarct: MRI R2* Mapping and Relationship to Clinical Outcome. Radiology, March 12, 2019. https://doi.org/10.1148/radiol.2019182126

Related Content

Lunit Receives Korea MFDS Approval for Lunit Insight MMG
News | Artificial Intelligence | August 19, 2019
Lunit has announced Korea Ministry of Food and Drug Safety (MFDS) approval of its artificial intelligence (AI) solution...
New MRI Technique Captures Brain Changes in Near-real Time

Differences in stiffness between stimulus states. Image courtesy of Patz et al.

News | Neuro Imaging | August 19, 2019
An international team of researchers developed a new magnetic resonance imaging (MRI) technique that can capture an...
Mobile Stroke Unit Gets Patients Quicker Treatment Than Traditional Ambulance

Image courtesy of UTHealth McGovern Medical School

News | Stroke | August 16, 2019
Every second counts for stroke patients, as studies show they can lose up to 27 million brain cells per minute....
ADHD Medication May Affect Brain Development in Children

Images of regions of interest (colored lines) in the white matter skeleton representation. Data from left and right anterior thalamic radiation (ATR) were averaged. Image courtesy of C. Bouziane et al.

News | Neuro Imaging | August 16, 2019
A drug used to treat attention-deficit/hyperactivity disorder (ADHD) appears to affect development of the brain’s...
Profound Medical Receives U.S. FDA 510(k) Clearance for Tulsa-Pro
Technology | Interventional Radiology | August 16, 2019
Profound Medical Corp. announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to...
First Patient Enrolled in World's Largest Brain Cancer Clinical Trial
News | Radiation Therapy | August 15, 2019
Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive...
Efficacy of Isoray's Cesium Blu Showcased in Recent Studies
News | Brachytherapy Systems | August 14, 2019
August 14, 2019 — Isoray announced a trio of studies recently reported at scientific meetings and published in medica
Imago Systems Announces Collaboration With Mayo Clinic for Breast Imaging

Image courtesy of Imago Systems

News | Mammography | August 14, 2019
Image visualization company Imago Systems announced it has signed a know-how license with Mayo Clinic. The multi-year...