News | March 26, 2014

Improved Magnesium Diboride Wires Deliver MRI-Level Image Quality

MRI scans, magnesium diboride
March 26, 2014 -- Based on its recent analysis of the superconductor technology for MRI market, Frost & Sullivan recognizes Cutting Edge Superconductors, Inc. with the 2013 North American Frost & Sullivan Award for Technology Innovation Leadership. CES, Inc. developed a proprietary technology based on magnesium diboride superconducting wire, which enabled cryogen-free 1.5T and 3.0T magnetic resonance imaging (MRI) with image qualities similar to the currently available 1.5T MRI. The technology leveraged innovative customizations in the chemistry of the material by adding both magnetic and non-magnetic impurities to magnesium diboride wires. This resulted in improvements to the critical currents of superconducting magnesium diboride wires.
 
The cryogen-free 0.5T MRI delivers images of average quality when compared to 1.5T MRI, as the quality of image is directly dependent on the square of the strength of the magnetic field. However, the current 1.5T MRI technology requires the use of cost-intensive liquid helium, which increases the cost of maintenance and operation, as well as initial cost.
 
"The next-generation, cryogen-free 1.5T and 3.0T MRI technology promises a reduction in the MRI scan cost by up to 40 percent due to the financial viability and simplicity of the MRI equipment," said Frost & Sullivan Senior Research Analyst Avimanu Basu. "This cost-effectiveness is achieved by maintaining a higher operating temperature of 20 degrees K with the help of a cryocooler, which eliminates the need for expensive liquid helium."
 
Furthermore, the technology is maintenance-free and extends the equipment's longevity to 10 to 20 years. The presently available MRI has a lifetime of five to seven years and is complex and expensive to maintain, as it employs superconducting NbTi wires that operate at a temperature of 4 degrees K. This necessitates cooling with the help of 1,700 liters of liquid helium cryogen.
 
"CES, Inc.'s technology is aimed at improving the current-carrying capacity of wires and thus, the field strength of the magnet," noted Basu. "On the one hand, this makes the device more industrially viable and simple and on the other, it supports the development of a range of applications across industries."
 
The technology is expected to influence a wide spectrum of industries such as electrical power (generation, transmission, and distribution), healthcare, air travel and defense. It can also be applied in high-performance cryogen-free magnets for scientific nuclear magnetic resonance (NMR), accelerators and fusion reactors. In addition, it can benefit small hospitals in economically unstable nations in the form of low-cost, high-quality portable MRI.
 
Each year, Frost & Sullivan presents this award to the company that has demonstrated uniqueness in developing a technology, which significantly impacts both the functionality and the customer value of new products and applications. The award lauds the relevance of the innovation to the industry.
 

Related Content

International Working Group Releases New Multiple Myeloma Imaging Guidelines

X-ray images such as the one on the left fail to indicate many cases of advanced bone destruction caused by multiple myeloma, says the author of new guidelines on imaging for patients with myeloma and related disorders. Image courtesy of Roswell Park Comprehensive Cancer Center.

News | Computed Tomography (CT) | June 17, 2019
An International Myeloma Working Group (IMWG) has developed the first set of new recommendations in 10 years for...
SyMRI Software Receives FDA Clearance for Use With Siemens MRI Systems
Technology | Magnetic Resonance Imaging (MRI) | June 14, 2019
SyntheticMR announced U.S. Food and Drug Administration (FDA) clearance for clinical use of its SyMRI Image and SyMRI...
A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse

Figure 1. A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse from Amsterdam Ph.D. researcher Gustav Strijkers.

News | Magnetic Resonance Imaging (MRI) | June 07, 2019
The Amsterdam University Medical Center has won MR Solutions’ Image of the Year 2019 award for the best molecular...
Study Identifies MRI-Guided Radiation Therapy as Growing Market Segment
News | Image Guided Radiation Therapy (IGRT) | June 06, 2019
Revenues from the magnetic resonance imaging (MRI)-guided radiation therapy systems market exceeded $220 million in...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...

Photo courtesy of Philips Healthcare

Feature | Radiology Business | May 31, 2019 | By Arjen Radder
Change is a consistent theme in our world today, no matter where you look.
MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...