News | August 27, 2014

Imaging System Guides Brain Tumor Removal to Improve Patient Outcomes

New system is more accurate, spares healthy tissue, and costs less than current methods

Superimposed on an MRI image of the tumor the DESI-MS system shows areas clear of tumor (D11 and D2) as well as the main tumor region with a high level of the tumor metabolite 2-HG (D3.)

During tumor surgery, surgeons work to remove tumor tissue without damaging surrounding healthy tissue. This is particularly critical when removing brain gliomas, as damage to adjacent healthy brain tissue can have significant effects on a patient’s neural function. On the other hand, if cancerous tissue is not completely removed, the tumor may grow back. To address these issues, NIBIB-funded researchers have developed an imaging system that rapidly and accurately detects a molecular marker found in brain gliomas. It promises to improve the precision of these difficult surgeries by enabling the complete removal of the tumor, while reducing residual damage to brain tissue and neural function.

The imaging system is known as desorption electrospray ionization mass spectrometry (DESI MS). The technique was developed by R. Graham Cooks, Ph.D., at Purdue University, and the brain study was done with collaborators at Harvard Medical School and Dana Farber Cancer Institute, and is described in the June 30 issue of the Proceedings of the National Academies of Science. DESI MS promises to be a significant improvement over the current method of distinguishing brain tumor tissue from healthy tissue, which relies on an extremely lengthy and difficult procedure for surgeons and patients.

The current protocol uses frozen section pathology, which involves removing suspected tumor tissue and having it analyzed by pathologists. They use a freezing and staining method that takes about 20 minutes and is too slow to be repeated multiple times during surgery. This method, developed more than 150 years ago, is both inefficient and lacks precision. It can result in incomplete tumor removal and regrowth, as well as inadvertent damage to healthy tissue, which can cause significant deficits in functioning for patients.

The new technique solves some of the problems of the current method. Researchers use the ability of mass spectrometry to identify metabolites that are present in brain tumors, but not in healthy tissue. As surgery progresses, tissue samples are removed and sprayed with a charged liquid that splashes onto the surface of the tissue, lifting off droplets; the droplets are then sucked into a mass spectrometer, where the mass and charge of the metabolites are measured. Brain gliomas produce large amounts of a tumor metabolite, 2-hydroxyglutarate (2-HG), which is captured in the droplets. This very rapid, objective method allows for clear delineation of tumor versus non-tumor tissue, so surgeons can remove all, and only, tumor tissue. 

The DESI MS system was first tested on glioma specimens from 35 patients. Twenty-one of the 35 samples contained high levels of 2-HG, a product of the mutant form of a gene known as IDH, which is associated with tumor formation. The results clearly demonstrated that DESI MS can detect 2-HG in tumor tissue with very high sensitivity and specificity.

The researchers went on to test the system in an operating room. The group installed a complete DESI MS system in the Advanced Multimodality Image Guided Operating (AMIGO) suite at Brigham and Women’s Hospital that is a part of the National Center for Image-Guided Therapy. The AMIGO surgical suite is an operating room with built-in imaging devices such as MRI, so the surgeon can use it to map the tumor pre-operatively. Tissue sections from tumors from two patients were examined using DESI MS. In both cases, the post-operative analysis confirmed that intraoperative DESI MS had accurately detected the presence of 2-HG in each tumor.

The researchers chose detection of 2-HG to test the DESI MS system because about 80% of gliomas and glioblastomas are associated with mutations in the IDHgene, which results in high levels of 2-HG. The approach described here could be applicable to the resection of all 2-HG-producing tumors.

Gliomas are tumors of brain glial cells and account for the majority of malignant brain tumors in adults. Gliomas make up approximately 30% of all brain and central nervous system tumors and 80% of all malignant brain tumors. These experiments provide proof-of-concept of the accuracy and practicality of the DESI MS system, and suggest that the system can be used with this common 2-HG-producing tumor, as well as other tumors in which a metabolic marker of malignancy is produced.

The DESI MS system was shown to be extremely accurate and was easily adapted for use in the clinical setting. It does not have the limitations of MRI, which cannot provide information about the type of tumor, and requires that surgery be halted for an hour or longer for scanning and interpretation of results. Moreover, each operating room that contains an MRI machine costs more than $10 million. In contrast, DESI MS platforms could be set up in any operating room at a very small fraction of the cost. The DESI MS system promises to be a powerful new tool for both research and clinical applications with the potential to transform surgical care of patients with brain tumors and other solid tumors.

Related Content

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
Partial Breast Irradiation Effective, Convenient Treatment Option for Low-Risk Breast Cancer
News | Radiation Therapy | May 20, 2019
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast...
AI Detects Unsuspected Lung Cancer in Radiology Reports, Augments Clinical Follow-up
News | Artificial Intelligence | May 20, 2019
Digital Reasoning announced results from its automated radiology report analytics research. In a series of experiments...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
New Study Evaluates Head CT Examinations and Patient Complexity
News | Neuro Imaging | May 17, 2019
Computed tomography (CT) of the head uses special X-ray equipment to help assess head injuries, dizziness and other...
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...