News | July 22, 2007

Hybrid MRI-Radiation Therapy May Improve Treatment

July 23, 2007 - Bringing together the high-quality 3D images of magnetic resonance imaging (MRI) with the intense tumor-killing X-rays of a linear accelerator, scientists at the Alberta Cancer Board are building a prototype that could for the first time enable powerful X-ray beams to become a viable treatment option for liver, stomach and pancreatic cancers, which currently must be treated with surgery, drugs, or internal radioactive seeds in most cases. The hybrid device could also improve results for all cancer patients receiving radiation therapy. Gino Fallone of the Alberta Cancer Board will present this new system at the annual meeting of the American Association of Physicists in Medicine in Minneapolis between July 22-26, 2007.

Radiation therapy is a proven cancer treatment. However, precisely targeting the radiation beam where the tumor is located is still difficult with modern technology. Radiation therapy currently relies on a set of images being taken with radiation (such as X-rays, ultrasound, MRI, PET) and then a complex calculation process to map where the radiation should be targeted.

With this multi-step process, it is difficult to treat local cancers on organs that move, such as the lungs, liver, stomach and pancreas. For other solid tumors, by the time the patient receives radiation their position and sometimes their shape can have changed from the first imaging exams. For this reason, clinicians must allow for a small margin of error. They must apply radiation to a region slightly larger than the tumor to ensure that the entire tumor is treated. Such "treatment margins" damage healthy tissue and can result in more, sometimes serious, side effects. While there are workaround techniques, they can be invasive and problematic.
To overcome the problems of motion and poor tumor definition in X-ray and CT imaging, Alberta Cancer Board researchers Gino Fallone, Marco Carlone and Brad Murray are developing a radiation therapy MRI system using a process called Advanced Real-Time Adaptive RadioTherapy (ART). This process will allow for high-quality, real time MRI imaging at the same time radiation is being administered. MRI provides higher quality images of tumors and organs than X-rays or computed tomography (CT) machines. In addition, it is the only imaging method that can truly provide high-quality, near-real-time 3D images inside the body.

Combining a linear accelerator used for radiation treatments and an MRI is difficult because they function on incompatible scientific and engineering principles. ART overcomes the issue by rotating an MRI machine and a linear accelerator together. The MRI is an "open bore" design, giving patients vastly more room and allowing their heads to be outside the machine for most procedures. The two machines are fixed with respect to each other and rotate in unison around the patient, delivering treatments from all angles. This fixed-system concept reduces electromagnetic interference between the linear accelerator and the MRI and is protected under U.S. and International patents assigned to the Alberta Cancer Board.
The prototype ART is currently under development. A finished prototype is expected by December 2007. When complete, its builders believe will significantly improve the accuracy of radiation treatments for solid tumors, which will result in reduced side effects. More significantly, it will add radiation as a viable treatment option for liver, stomach and pancreatic cancers and could significantly improve treatment for lung and prostate cancers where it is still difficult to administer sufficient radiation doses to obtain a better chance of a cure.

For more information: www.aapm.org

Related Content

LVivo EF Comparable to MRI, Contrast Echo in Assessing Ejection Fraction
News | Cardiovascular Ultrasound | June 19, 2019
DiA Imaging Analysis announced the presentation of two studies assessing the performance and accuracy of the company's...
International Working Group Releases New Multiple Myeloma Imaging Guidelines

X-ray images such as the one on the left fail to indicate many cases of advanced bone destruction caused by multiple myeloma, says the author of new guidelines on imaging for patients with myeloma and related disorders. Image courtesy of Roswell Park Comprehensive Cancer Center.

News | Computed Tomography (CT) | June 17, 2019
An International Myeloma Working Group (IMWG) has developed the first set of new recommendations in 10 years for...
SyMRI Software Receives FDA Clearance for Use With Siemens MRI Systems
Technology | Magnetic Resonance Imaging (MRI) | June 14, 2019
SyntheticMR announced U.S. Food and Drug Administration (FDA) clearance for clinical use of its SyMRI Image and SyMRI...
A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse

Figure 1. A high-fidelity 3-D tractography of the left ventricle heart muscle fibers of a mouse from Amsterdam Ph.D. researcher Gustav Strijkers.

News | Magnetic Resonance Imaging (MRI) | June 07, 2019
The Amsterdam University Medical Center has won MR Solutions’ Image of the Year 2019 award for the best molecular...
Study Identifies MRI-Guided Radiation Therapy as Growing Market Segment
News | Image Guided Radiation Therapy (IGRT) | June 06, 2019
Revenues from the magnetic resonance imaging (MRI)-guided radiation therapy systems market exceeded $220 million in...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...

Photo courtesy of Philips Healthcare

Feature | Radiology Business | May 31, 2019 | By Arjen Radder
Change is a consistent theme in our world today, no matter where you look.
MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...