News | Magnetic Resonance Imaging (MRI) | July 05, 2018

High-Strength MRI May Release Mercury from Amalgam Dental Fillings

While new research suggests ultra-high-field 7T MRI could pose problems for people with amalgam fillings, conventional 1.5T scans were found to be safe

High-Strength MRI May Release Mercury from Amalgam Dental Fillings

July 5, 2018 — Exposure to ultra-high-strength magnetic resonance imaging (MRI) may release toxic mercury from amalgam fillings in teeth, according to a new study appearing online in the journal Radiology. The effect was not seen, however, in the lower strength, more commonly used 1.5-Tesla (T) MRI.

Amalgam fillings, also known as silver fillings, have been a staple of dentistry for many years. Amalgam consists of approximately 50 percent mercury, a known toxin that can cause a host of harmful effects in humans. Despite the presence of mercury, the U.S. Food and Drug Administration (FDA) considers amalgam fillings safe for adults and children older than age six.

“In a completely hardened amalgam, approximately 48 hours after placing on teeth, mercury becomes attached to the chemical structure, and the surface of the filling is covered with an oxide film layer,” said the study’s lead author, Selmi Yilmaz, Ph.D., a dentist and faculty member at Akdeniz University in Antalya, Turkey. “Therefore, any mercury leakage is minimal.”

Previous research has found that exposure to the magnetic fields of MRI could cause mercury to leak from amalgam fillings. This concern has been heightened by the recent arrival of ultra-high-strength 7T scanners in the clinic. The stronger magnetic field of 7T MRI yields more anatomical detail, but its effects on amalgam dental fillings have not been studied.

To learn more, Yilmaz and colleague, Mehmet Zahit Adişen, Ph.D., evaluated mercury released from dental amalgam after 7T and 1.5T MRI in teeth that had been extracted from patients for clinical indications. While 7T MRI was approved by the FDA in 2017, it has extremely limited availability. The lower-strength 1.5T MRI is widely available and commonly used for patient exams.

The researchers opened two-sided cavities in each tooth and applied amalgam fillings. After nine days, two groups of 20 randomly selected teeth were placed in a solution of artificial saliva immediately followed by 20 minutes of exposure to 1.5T or 7T MRI. A control group of teeth was placed in artificial saliva only.

When the researchers analyzed the artificial saliva, the mercury content in the 7T, 1.5T and control group was 0.67 ± 0.18, 0.17 ± 0.06 and 0.14 ± 0.15 parts per million (ppm), respectively.  At 0.67 ppm, the mercury content in the 7T group was approximately four times the levels found in the 1.5T group and the control group.

“In our study, we found very high values of mercury after ultra-high-field MRI,” Yilmaz said. “This is possibly caused by phase change in amalgam material or by formation of microcircuits, which leads to electrochemical corrosion, induced by the magnetic field.”

An important point of discrimination concerning safety and hazard to human health is the amount of mercury that is absorbed by the vital tissues.

“It is not clear how much of this released mercury is absorbed by the body,” Yilmaz said.

Further studies may be warranted, Yilmaz added, to evaluate the relationship between high-field MRI and release of mercury from dental amalgam. The researchers have three ongoing projects focused on phase and temperature changes of dental amalgam across different magnetic fields.

As no evidence of harmful effects was found in the 1.5T group, patients with amalgam fillings should not be unduly concerned about having an MRI exam.

For more information: www.pubs.rsna.org/journal/radiology

Reference

Yilmaz S., Adisen M.Z. "Ex Vivo Mercury Release from Dental Amalgam after 7.0-T and 1.5-T MRI," Radiology. June 26, 2018. https://doi.org/10.1148/radiol.2018172597

Related Content

 Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Investigators led by a team at Massachusetts General Hospital (MGH) now describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated functionally intact brain connections and weeks later he recovered the ability to follow commands

Getty Images

News | Coronavirus (COVID-19) | July 08, 2020
July 8, 2020 — Many patients with severe coronavirus disease 2019 (...
A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

News | Magnetic Resonance Imaging (MRI) | July 02, 2020
July 2, 2020 — Axonics Modulation Technologies, Inc., a medical technology company that has developed and is commerci
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 30, 2020 | By Melinda Taschetta-Millane
Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Pediatric Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic r...
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020.

Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020. Courtesy of Nature Medicine

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The characterization of COVID-19