News | Magnetic Resonance Imaging (MRI) | July 05, 2018

High-Strength MRI May Release Mercury from Amalgam Dental Fillings

While new research suggests ultra-high-field 7T MRI could pose problems for people with amalgam fillings, conventional 1.5T scans were found to be safe

High-Strength MRI May Release Mercury from Amalgam Dental Fillings

July 5, 2018 — Exposure to ultra-high-strength magnetic resonance imaging (MRI) may release toxic mercury from amalgam fillings in teeth, according to a new study appearing online in the journal Radiology. The effect was not seen, however, in the lower strength, more commonly used 1.5-Tesla (T) MRI.

Amalgam fillings, also known as silver fillings, have been a staple of dentistry for many years. Amalgam consists of approximately 50 percent mercury, a known toxin that can cause a host of harmful effects in humans. Despite the presence of mercury, the U.S. Food and Drug Administration (FDA) considers amalgam fillings safe for adults and children older than age six.

“In a completely hardened amalgam, approximately 48 hours after placing on teeth, mercury becomes attached to the chemical structure, and the surface of the filling is covered with an oxide film layer,” said the study’s lead author, Selmi Yilmaz, Ph.D., a dentist and faculty member at Akdeniz University in Antalya, Turkey. “Therefore, any mercury leakage is minimal.”

Previous research has found that exposure to the magnetic fields of MRI could cause mercury to leak from amalgam fillings. This concern has been heightened by the recent arrival of ultra-high-strength 7T scanners in the clinic. The stronger magnetic field of 7T MRI yields more anatomical detail, but its effects on amalgam dental fillings have not been studied.

To learn more, Yilmaz and colleague, Mehmet Zahit Adişen, Ph.D., evaluated mercury released from dental amalgam after 7T and 1.5T MRI in teeth that had been extracted from patients for clinical indications. While 7T MRI was approved by the FDA in 2017, it has extremely limited availability. The lower-strength 1.5T MRI is widely available and commonly used for patient exams.

The researchers opened two-sided cavities in each tooth and applied amalgam fillings. After nine days, two groups of 20 randomly selected teeth were placed in a solution of artificial saliva immediately followed by 20 minutes of exposure to 1.5T or 7T MRI. A control group of teeth was placed in artificial saliva only.

When the researchers analyzed the artificial saliva, the mercury content in the 7T, 1.5T and control group was 0.67 ± 0.18, 0.17 ± 0.06 and 0.14 ± 0.15 parts per million (ppm), respectively.  At 0.67 ppm, the mercury content in the 7T group was approximately four times the levels found in the 1.5T group and the control group.

“In our study, we found very high values of mercury after ultra-high-field MRI,” Yilmaz said. “This is possibly caused by phase change in amalgam material or by formation of microcircuits, which leads to electrochemical corrosion, induced by the magnetic field.”

An important point of discrimination concerning safety and hazard to human health is the amount of mercury that is absorbed by the vital tissues.

“It is not clear how much of this released mercury is absorbed by the body,” Yilmaz said.

Further studies may be warranted, Yilmaz added, to evaluate the relationship between high-field MRI and release of mercury from dental amalgam. The researchers have three ongoing projects focused on phase and temperature changes of dental amalgam across different magnetic fields.

As no evidence of harmful effects was found in the 1.5T group, patients with amalgam fillings should not be unduly concerned about having an MRI exam.

For more information: www.pubs.rsna.org/journal/radiology

Reference

Yilmaz S., Adisen M.Z. "Ex Vivo Mercury Release from Dental Amalgam after 7.0-T and 1.5-T MRI," Radiology. June 26, 2018. https://doi.org/10.1148/radiol.2018172597

Related Content

Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
Study Shows Biomarker Panel Boosts Lung Cancer Risk Assessment for Smokers
News | Lung Cancer | July 16, 2018
A four-protein biomarker blood test improves lung cancer risk assessment over existing guidelines that rely solely upon...
Breast Cancer Follow-up Imaging Varies Widely
News | Breast Imaging | July 13, 2018
July 13, 2018 — Follow-up imaging for women...
iSchemaView Brings RAPID Imaging Platform to Australia and New Zealand
News | Stroke | July 13, 2018
iSchemaView has signed Diagnostic Imaging Australia (DIA) to be the exclusive distributor for the RAPID cerebrovascular...
Lack of Insurance Coverage Delaying Proton Therapy Clinical Trials
News | Proton Therapy | July 12, 2018
Randomized clinical trials are the gold standard of cancer research and can shed light on whether innovative, new...
Breast Cancer Studies Ignore Race, Socioeconomic Factors
News | Women's Health | July 11, 2018
A new commentary appearing in the July issue of Cancer Causes & Control points to evidence that social factors help...
Ensuring that the FMDS for MRI safety is mounted outside Zone IV provides maximum early warning.

Ensuring that the FMDS for MRI safety is mounted outside Zone IV provides maximum early warning. (Images courtesy of Metrasens)

Feature | Magnetic Resonance Imaging (MRI) | July 03, 2018 | By Tobias Gilk
Nearly every job in the country is subject to certain health and safety regulations. Construction workers must wear...
Researcher Investigates Eliminating Radiation for HER2-Positive Breast Cancer
News | Radiation Therapy | July 02, 2018
Researchers at The University of Kansas Cancer Center have launched a clinical trial that eliminates radiation from the...
Norwegian Study Confirms Higher Cancer Rate in Women with Dense Breast Tissue
News | Breast Density | July 02, 2018
A large Norwegian study using automated breast density measurements found that women with mammographically dense breast...
Overlay Init