News | November 14, 2012

GE Healthcare Announces 500th Global Shipment of Optima MR360, Brivo MR355 Systems

November 14, 2012 — Two years after the joint launch of Optima MR360 and Brivo MR355, GE Healthcare announced a major milestone with the 500th shipment of these products combined, making the duo one of the fastest in GE MR (magnetic resonance) history to reach this milestone. This GE exclusive combines the speed and high resolution of an ultra-high field system with the breadth of imaging capabilities that increase the versatility of the system.

The Optima MR360 is designed to enable improvements in scan speed and image quality all with a lower power consumption. This innovative technology offers a large patient volume with a 48-cm field-of-view imaging capability. This system enables optimized neurovascular, MSK, body and cardiovascular applications.

The Brivo MR355 system is part of the GE healthymagination initiative to make advanced diagnostic technology more accessible and cost-effective. The design of the Brivo MR355 1.5T contributes to providing high-quality imaging with an easy-to-use user interface that will help customers make definitive diagnoses for patients. This system features a 48-cm field-of-view, OpTix technology and the embedded Express coil. The Brivo MR355 is also upgradable.

"The Optima MR360 and Brivo MR355 are engineered to be remarkably flexible and efficient to deliver benefits to the customers. Both systems are easy-to-use and help increase the confidence of clinicians’ diagnoses,” said Steve Tan, general manager of GE Healthcare’s Value MR business. “Additionally, the Optima MR360 and Brivo MR355 can potentially reduce annual energy costs by up to 34 percent per year compared to previous generation systems. Both systems can be sited in 20 percent smaller space compared to other full-body 1.5T scanners.”

"The Optima MR360 has proven to be invaluable in our radiology department, delivering quality, consistency and stability across a broad range of clinical applications compared to previous systems," said Dr. Sedat Alibek of Röntgeninstitute und Brustdiagnostik-Zentrum, Nuremburg, Germany. "Its optical radio frequency technology, energy conservation features and software innovations such as IDEAL, all contribute to it being a high-performing, versatile system."

For more information: www.gehealthcare.com

Related Content

Researchers have developed an artificial intelligence (AI)-based brain age prediction model to quantify deviations from a healthy brain-aging trajectory in patients with mild cognitive impairment, according to a study published in Radiology: Artificial Intelligence. The model has the potential to aid in early detection of cognitive impairment at an individual level.

Flowchart showing the framework of the brain age prediction model. A, The imaging data were split into training and test datasets. The training dataset consisted of structural magnetic resonance imaging data from 974 healthy individuals, whereas the test dataset included data from 2 groups, 231 healthy controls and 224 aMCI subjects. B, A Conventional Statistical Parametric Mapping structural preprocessing pipeline was used to generate GMV maps in the MNI space. C, The intensity values from the GMV maps were extracted and concatenated to create a feature matrix that was then cleaned and normalized. D, The best elastic net model was obtained by performing supervised learning on the training dataset. To optimize the hyperparameters, a grid search was performed. E, The test dataset was input into the trained model. An age was predicted for every participant included in the test dataset. The PAD scores were calculated by subtracting the participant's chronological age from his or her predicted age. aMCI = amnestic mild cognitive impairment, GMV = gray matter volume, MNI = Montreal Neurologic Institute, Dartel = Diffeomorphic Anatomic Registrations Through Exponentiated Lie Algebra, PAD = predicted age difference. Chart courtesy of Radiological Society of North America

News | Artificial Intelligence | June 23, 2021
June 23, 2021 — Researchers have developed an...
A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Richard Ernst was considered the father of nuclear magnetic resonance imaging (MRI)
News | Magnetic Resonance Imaging (MRI) | June 10, 2021
June 10, 2021 — The Washington Post has reported that Richard R.
According to a pilot study published in ARRS’ American Journal of Roentgenology (AJR), the flexed elbow valgus external rotation (FEVER) view can improve magnetic resonance imaging (MRI) evaluation of the ulnar collateral ligament (UCL) in Major League Baseball (#MLB) pitchers.

(A) Side view of volunteer demonstrating proper positioning for FEVER view; note elevated flexed elbow and sandbags to induce valgus stress. Elbow coil is not included in image.

(B) Coronal fat-saturated proton-density weighted MR image in FEVER view in 20-year-old male pitcher shows normal anterior bundle of UCL (blue arrow) and 2.9 mm UT articular width.

News | Magnetic Resonance Imaging (MRI) | June 04, 2021
A) Ultrasound in 28-year-old woman (B) MRI in 34-year-old woman with suspected PAS disorder. Focal area of placental tissues bulge toward imaginary lines of normal uterine contour (dash lines). Length (L) and depth (D) measurements of placental bulge also demonstrated. p = placenta; b = bladder. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

A) Ultrasound in 28-year-old woman (B) MRI in 34-year-old woman with suspected PAS disorder. Focal area of placental tissues bulge toward imaginary lines of normal uterine contour (dash lines). Length (L) and depth (D) measurements of placental bulge also demonstrated. p = placenta; b = bladder. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Ultrasound Imaging | June 01, 2021
June 1, 2021 — According to an open-access Editor's Choice article in ARRS' ...
Feature | Coronavirus (COVID-19) | May 26, 2021 | By Dave Fornell, Editor
May 26, 2021 — There are increasing reports of persistent symptoms after a patient recovers from...
The U.S. Food and Drug Administration (FDA) issued this final guidance: Testing and Labeling Medical Devices for Safety in the Magnetic Resonance (MR) Environment.

Image courtesy of Philips

News | Magnetic Resonance Imaging (MRI) | May 21, 2021
May 21, 2021 — The U.S.