News | Neuro Imaging | September 28, 2015

Functional MRI Shows Childhood Brain Tumors Affect Working Memory of Adult Survivors

Study participants demonstrated greater prefrontal region activation than controls

functional magnetic resonance imaging, fMRI, childhood brain tumors, working memory, adult survivors, Georgia State University, Tricia King

September 28, 2015 — Adult survivors of childhood brain tumors have lower working memory performance compared to healthy adults, according to researchers at Georgia State University and Emory University using functional magnetic resonance imaging (fMRI).

The findings, published in the Journal of the International Neuropsychological Society in August, report that adult survivors of pediatric posterior fossa brain tumors performed significantly lower than controls on standardized clinical tests of working memory performance administered in the study.

The researchers studied the working memory of adult survivors of childhood posterior fossa brain tumors versus a healthy control sample using fMRI and neuropsychological measures. Each group consisted of 17 participants.

During fMRI, the participants completed a measure called the n-back task. They were asked to monitor a series of letters and respond “yes” or “no” with their index or middle finger on a button box if an item was presented “n” items before, ranging from one to three letters back. Accurately recalling a letter two or three letters back represented higher working memory capabilities. Participants also completed other standardized clinical measures.

Whole-brain fMRI analyses also found survivors had significantly greater blood-oxygen level dependent (BOLD) activation in the left superior/middle frontal gyri and left parietal lobe of their brain during a verbal working memory task, demonstrating higher activation in these structures. Analyses revealed higher levels of activations in prefrontal regions were associated with lower behavioral performance on higher-load working memory tasks.

“Our goal was to identify the neural mechanisms underlying working memory difficulty in adult survivors of childhood brain tumors,” said Tricia King, Ph.D., associate professor of psychology and neuroscience at Georgia State. “The results suggest that adult survivors of pediatric posterior fossa brain tumors recruited additional resources to control cognitive ability in the prefrontal lobe during increased demands for working memory. This increased prefrontal activation is associated with lower working memory performance.”

Adult survivors of childhood brain tumors are at risk for neurocognitive deficits, such as working memory impairment, that contribute to poor long-term outcomes. While advances in diagnosis and treatment have led to improved clinical outcomes and increases in the five-year survival rates of pediatric brain tumor patients, research has shown that long-term childhood brain tumor survivors suffer from adverse health, disrupted quality of life, and impaired cognitive and social outcomes.

Working memory deficits are also common in other neurological conditions, such as schizophrenia, multiple sclerosis and traumatic brain injury, because working memory is an essential component for higher-order cognitive processes in humans.

Understanding of the neural mechanism underlying working memory impairments in adult survivors of childhood brain tumors is limited and little fMRI research with these survivors has been reported. This study was designed to address this gap in knowledge and improve treatment for survivors of childhood brain tumors.

Collaborators for the project include Sabrina Na of Georgia State and Hui Mao of Emory University. The study was funded by the American Cancer Society’s Research Scholar Grant (King) and a Brains and Behavior graduate student fellowship (Na) from Georgia State.

For more information: www.psychology.gsu.edu

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...

Image courtesy of Philips Healthcare

Feature | Magnetic Resonance Imaging (MRI) | September 06, 2018 | By Melinda Taschetta-Millane
According to the Prescient & Strategic Intelligence report, “Global Magnetic Resonance Imaging (MRI) Market Size,...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...