News | Magnetic Resonance Imaging (MRI) | October 31, 2017

Football Position and Length of Play Affect Brain Impact

Study combining DTI and fMRI finds no difference in brain function based on length of playing career, but suggests “non-speed” players have decreased function

Football Position and Length of Play Affect Brain Impact

October 31, 2017 — Researchers have found that damage to white matter in the brains of former college and professional football players due to recurrent head impacts can be related to playing position and career duration, according to a new clinical study published online in the journal Radiology.

Most previous research on head impacts in football has focused on cognitively impaired former football players. This is the first neuroimaging study to compare former football players with no evidence of cognitive impairment to analyze the effects of different playing histories and concussion exposure. 

“Our study, by including both former collegiate and professional players, gives us the ability to examine career duration and playing position along with concussion history,” said study author Kevin Guskiewicz, Ph.D., research director for the Center for the Study of Retired Athletes at the University of North Carolina at Chapel Hill (UNC-Chapel Hill). “By doing so, we found that these factors are all important when considering the long-term effects of playing football.”   

The research team recruited 64 former collegiate and professional football players, aged 52 to 65. Half of the former athletes played only college football, and half continued on to the professional league. Half of the former players reported three or more prior concussions, while the other half reported one or no prior concussions. The researchers recruited an equal number of speed and non-speed playing positions. The non-speed positions consisted of offensive or defensive linemen.

Two magnetic resonance imaging (MRI) techniques — diffusion tensor imaging (DTI) and functional MRI (fMRI) — were used to examine 61 of the former players. MRI data from the other three players were excluded due to excessive movement or inability to complete the MRI exam. DTI was used to analyze white matter structural integrity, while fMRI was used to assess brain function while the players performed a memory task.

“While DTI and fMRI have been used previously in the field of concussion research, we are among the first to combine the two techniques,” said co-author Michael Clark, medical student at UNC-Chapel Hill. “We were interested in how white matter and the ability to recruit brain resources to complete a memory task might be affected by head impact exposure in terms of career length and the position played. By using two different and complementary types of MRI, we were able to see the relationship between structure and function, both of which are affected by head impact exposure.”

The results showed a significant interaction between career duration and concussion history. Former college players with three or more concussions had lower integrity in a broadly distributed area of white matter compared to those with one concussion or less. However, the opposite was true for former professional players.

The researchers speculate that players with a long career duration, exposure to recurrent concussive events, and who are cognitively normal in their late 50s may not be reflective of the highly exposed former professional football player population as a whole.

“We’re not exactly sure why this is the case for the former pros,” Clark said. “It may have to do with the sample of athletes we recruited into the study. But the findings could suggest that a career with additional exposure to football is not necessarily worse than a shorter duration of exposure.”

The non-speed players with a history of recurrent concussion had reduced integrity in the frontal white matter and lower measure of activation during the fMRI task than those with one concussion or less. This was not the case for the speed players.

The interactions observed between concussion histories and playing positions suggest there may be important differences in the mechanisms of injury between speed and non-speed players. The magnitude, location and frequency of head impacts in football differ by position. Offensive backs experience impacts at greater acceleration. Linemen, however, tend to experience a greater overall frequency of impacts, and have the greatest proportion of impacts to the front of the helmet. The high proportion of frontal impacts experienced by non-speed players may result in more localized damage to frontal white matter tracts as compared to the more variable impact locations experienced by speed position players.

“These findings suggest the playing position of an athlete may change the effects of concussions on the brain,” Guskiewicz said. “The mechanisms of concussions in non-speed players are fundamentally different from those of speed position players, suggesting that perhaps position-specific helmets are warranted.”

The researchers added that more work is needed to better understand the results and to determine the underlying mechanisms regarding how subconcussive and concussive impacts affect brain health later in life.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

An oncologist practices social distancing while talking to a cancer patient. Image courtesy of University of Michigan Rogel Cancer Center

News | Coronavirus (COVID-19) | August 07, 2020
August 7, 2020 — When COVID-19 struck, health ca
As part of an international collaboration, researchers from Aarhus University and University of Leicester have succeeded in developing a dynamic 3-D CT scanning method that shows what happens inside the body during simulated heart massage

A look inside cardiopulmonary resuscitation: A 4-D computed tomography model of simulated closed chest compression. A proof of concept. Courtesy of Kasper Hansen/Jonathan Bjerg Moeller/Aarhus University

News | Cardiac Imaging | August 07, 2020
August 7, 2020 — Rapid first aid during...
Ghost imaging approach could enable detailed movies of the heart with low-dose X-rays

Researchers developed a high-resolution X-ray imaging technique based on ghost imaging that can capture the motion of rapidly moving objects. They used it to create a movie of a blade rotating at 100,000 frames per second. Image courtesy of Sharon Shwartz, Bar-Ilan University

News | X-Ray | August 06, 2020
August 6, 2020 — Researche...
Imaging volumes in hospitals and practices previously slowed by the coronavirus pandemic continue to hold steady, according to new QuickPoLL survey results that gauge how radiologists feel about current business and the impact of COVID-19.
Feature | Coronavirus (COVID-19) | August 03, 2020 | By Melinda Taschetta-Millane
Imaging volumes in hospitals and practices previously slowed by the coronavirus pandemic continue to hold steady, acc
Franco Fontana, CEO of the Esaote Group, and Xie Yufeng, Chairman of WDM.

Franco Fontana, CEO of the Esaote Group, and Xie Yufeng, Chairman of WDM.

News | Digital Radiography (DR) | July 31, 2020
July 31, 2020 — In the thick of the COVID-19 eme
It covers every major modality, including breast imaging/mammography, fixed and portable C-arms (cath, IR/angio, hybrid, OR), CT, MRI, nuclear medicine, radiographic fluoroscopy, ultrasound and X-ray
News | Radiology Imaging | July 29, 2020
July 29, 2020 — IMV Medical Information, part of Scien...
Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

News | Prostate Cancer | July 28, 2020
July 28, 2020 — A study published in 
(a) A schematic of cycloidal computed tomography (not to scale, seen from top); by adding an array of beam stops in front of the detector, the setup is transformed into an edge-illumination x-ray phase-contrast imaging device. (b) A sinogram sampling grid for a rotation-only scheme. (c) A sinogram sampling grid for a cycloidal scheme. The grids are shown for one mask period and a subset of rotation angles; the combination of empty and filled circles shows the grids that would be achieved through fine latera

(a) A schematic of cycloidal computed tomography (not to scale, seen from top); by adding an array of beam stops in front of the detector, the setup is transformed into an edge-illumination x-ray phase-contrast imaging device. (b) A sinogram sampling grid for a rotation-only scheme. (c) A sinogram sampling grid for a cycloidal scheme. The grids are shown for one mask period and a subset of rotation angles; the combination of empty and filled circles shows the grids that would be achieved through fine lateral sampling (requiring dithering); the filled circles show the data that are sampled without dithering.

News | Computed Tomography (CT) | July 24, 2020
July 24, 2020 — A computed tomography (CT) sca