News | Image Guided Radiation Therapy (IGRT) | August 07, 2017

Early Clinical Experience with ViewRay's MRIdian Linac Presented at AAPM 2017

Talks highlight clinical value of MRIdian on-table adaptive therapy for escalating target dose and avoiding nearby organs at risk

August 7, 2017 — ViewRay Inc. announced that several presentations of early clinical experience with its MRIdian Linac technology were made at the 2017 annual meeting of the American Association of Physicists in Medicine (AAPM), July 30-Aug. 2 in Denver. MRIdian Linac is the world’s only U.S. Food and Drug Administration (FDA)-cleared magnetic resonance imaging (MRI)-guided radiation therapy system with linear accelerator-based delivery, according to the company.

The company's MRIdian System was the focus of 30 abstracts selected by AAPM, including several talks describing the significant advantages of daily on-table adaptive radiation therapy and its positive clinical impact on treatment. MR-guided on-table adaptive therapy allows for dose escalation for stereotactic body radiation therapy (SBRT) treatments and dose de-escalation in cases where the critical structures are too close to the tumor. 

The AAPM Scientific Session talks also highlighted MRIdian's fully integrated workflow for adaptive therapy, which incorporates complete Monte Carlo dose replanning to account for changes in the shape and position of the tumor and adjacent organs in less than two minutes.

ViewRay featured a number of presentations in the company's booth given by MRIdian users from five top cancer centers: Henry Ford Health System in Metro Detroit; University of California, Los Angeles; Washington University in St. Louis; University of Wisconsin; and University of Miami.

Highlights from these talks included:

  • Carri Glide-Hurst, Ph.D., from Henry Ford presented on their initial patient experience with MRIdian Linac including treatment times of 6.25 minutes for 8Gy SBRT treatments and 5 minutes for prostate intensity modulated radiation therapy (IMRT) treatments. She also showed MRIdian movies on how the system's real-time imaging during treatment automatically detected and paused the treatment when a transient gas bubble shifted the prostate. Additional patients in the queue for Henry Ford include liver SBRT, retroperitoneal SBRT and accelerated partial breast irradiation (APBI). "MRIdian really does take the blindfold off in showing us things we've never seen before," said Glide-Hurst. "We're now able to treat indications that we hadn't really treated previously like APBI. We're excited about the potential of reducing margins and getting a conformal delivery with MRI guidance";
  • Anthony Doemer, M.S., from Henry Ford highlighted the ultra-sharp beam characteristics for the RayZR Double focused multileaf collimator (MLC). Because of its design, it removes the need for tongue and grooves, nearly eliminating any leakage through the leaves (average leakage, less than 0.001 percent). "We were able to successfully commission the MLC with great agreement between measured small beam profiles of 0.2 x 0.4 cm and larger profiles matching very well with the Monte Carlo simulations with tight conformance to the beam model," said Doemer;
  • Yingli Yang, Ph.D., from UCLA presented on MRIdian's high-quality MRI images, specifically the superior soft-tissue image quality enabled by MRIdian's processing techniques. Yang also highlighted early research imaging results acquired using a new MR acquisition technique reducing the imaging times of 17 seconds down to approximately 12 seconds. This 3-D MRI sequence provides motion artifact-free images with a large field of view (FOV) for short breath hold. She also presented research on a 3-D MRI acquisition scheme that is insensitive to motion and will enable free breathing MRI for patients who are unable to hold their breath;
  • Vivian Rodriguez, Ph.D., from Washington University shared their extensive experience with on-table adaptive therapy, illustrating the significant anatomical changes that can take place within a short period of time and highlighting case examples where the treatment plan was reoptimized to escalate or de-escalate dose based upon the proximity of nearby critical structures while the patient was on the treatment table. "With a single button click we can replan within a minute a new treatment plan that reduces dose to organs at risk while giving a greater dose to the target," said Rodriguez; and
  • Kathryn Mittauer, Ph.D., from the University of Wisconsin shared their experience personalizing patient treatments through daily dose-guided radiotherapy using online recalculation and evaluation of the actual dose distribution. "We're able to deliver higher doses to targets adjacent to organs at risk due to improved confidence in treatment set up and delivery that would not otherwise be clinically feasible," said Mittauer.

For more information: www.viewray.com

 

Related Articles on MRI-guided Radiation Therapy:

MRI-guided Radiation Therapy (2017)

First Patients Treated with ViewRay's MRIdian Linac at Henry Ford Health System

Elekta Begins MR-Linac Installation at Sunnybrook Health Sciences Centre

MRI-Guided Radiation Therapy (2016)

MRI Brings New Vision to Radiation Therapy

Dutch Medical Center Begins Installation of World's First High-field MRI-guided Radiation Therapy System

Related Content

360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
New Method Improves Ability to Measure and Maximize Radiation Therapy Dose
News | Radiation Therapy | May 14, 2019
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime....
Sponsored Content | Videos | Radiation Oncology | May 13, 2019
At ASTRO 2018, Accuray showcased new patient-fi
Netherlands Hospital to Install State-of-the-Art MRI Ablation Center
News | Magnetic Resonance Imaging (MRI) | May 13, 2019
Imricor announced the signing of a commercial agreement with the Haga Hospital in The Hague, Netherlands to outfit a...
Radiotherapy After Chemo May Improve Survival in Advanced Hodgkin's Lymphoma Patients
News | Radiation Therapy | May 10, 2019
Patients with advanced Hodgkin's lymphoma who have large tumors at the time of diagnosis may benefit from radiotherapy...
IBA Partnering to Develop Advanced Digital Proton Therapy Technologies in Belgium
News | Proton Therapy | May 10, 2019
IBA (Ion Beam Applications SA) announced a research agreement with Skandionkliniken, Université Catholique de Louvain...
A CyberHeart cardiac ablation radiotherapy treatment plan showing where the radiation beam will ablate for a noninvasive pulmonary vein isolation procedure. Varian acquires, buys, purchases Cyberheart.

A CyberHeart cardiac ablation radiotherapy treatment plan showing where the radiation beams will ablate for a noninvasive pulmonary vein isolation procedure to treat an arrhythmia.

Feature | Radiation Therapy | May 10, 2019
May 10, 2019 — Radiation oncology vendor Varian announced it acquired the start-up company CyberHeart, which has deve
Screening MRI Detects BI-RADS 3 Breast Cancer in High-risk Patients
News | MRI Breast | May 09, 2019
When appropriate, short-interval follow-up magnetic resonance imaging (MRI) can be used to identify early-stage breast...