News | December 07, 2009

Diffusion Tensor Imaging Navigates Pediatric Brain Surgery

Diffusion tensor imaging increases ability to remove benign tumors in children.

December 4, 2009 - Operative plans for removing juvenile pilocytic astrocytoma, or JPA, tumors in the thalamus of the brain can be augmented with diffusion tensor imaging, or DTI, according to a new study published in last week's issue of the Journal of Neurosurgery: Pediatrics.

Operating on patients with deep-seated tumors such as JPA, a benign tumor most frequently observed in children and young adults in the thalamus, remains a neurosurgical challenge. Conventional imaging techniques, such as structural MRI, has helped to reveal major anatomical features of the brain, primary gray matter.

DTI, a variation of MRI, can help identify white matter, or nerve fiber bundles, using specific radio-frequency and magnetic field pulses to track the movement of water molecules of the brain. In most brain tissue, water molecules diffuse in all different directions. But they tend to diffuse along the length of axons, whose coating of white, fatty myelin holds them in. Scientists can create pictures of axons by analyzing the direction of water diffusion.

The sensitivity of DTI imaging allows for the visualization of nerve fiber bundles in the brain. This information can maximize the potential of completely removing the tumor, while avoiding damage to the fiber bundles that are directly related to motor functions of the patient.

“This study of six children with thalamic JPA showed that using advanced MRI technology can help identify distorted nerve fiber bundles around brain tumors,” said Jeffrey H. Wisoff, M.D., director of the Division of Pediatric Neurosurgery at NYU Langone Medical Center. “This allows an otherwise inoperable tumor to be completely removed which can hopefully lead to a cure.”

The co-authors of the study include Yaron Moshel, M.D., Ph.D., of the department of neurosurgery, David J. Monoky, M.D., clinical assistant professor in the department of radiology and Robert E. Elliott, M.D., in the department of neurosurgery at NYU Langone Medical Center.

For more information: www.communications.med.nyu.edu

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init