News | December 07, 2009

Diffusion Tensor Imaging Navigates Pediatric Brain Surgery

Diffusion tensor imaging increases ability to remove benign tumors in children.

December 4, 2009 - Operative plans for removing juvenile pilocytic astrocytoma, or JPA, tumors in the thalamus of the brain can be augmented with diffusion tensor imaging, or DTI, according to a new study published in last week's issue of the Journal of Neurosurgery: Pediatrics.

Operating on patients with deep-seated tumors such as JPA, a benign tumor most frequently observed in children and young adults in the thalamus, remains a neurosurgical challenge. Conventional imaging techniques, such as structural MRI, has helped to reveal major anatomical features of the brain, primary gray matter.

DTI, a variation of MRI, can help identify white matter, or nerve fiber bundles, using specific radio-frequency and magnetic field pulses to track the movement of water molecules of the brain. In most brain tissue, water molecules diffuse in all different directions. But they tend to diffuse along the length of axons, whose coating of white, fatty myelin holds them in. Scientists can create pictures of axons by analyzing the direction of water diffusion.

The sensitivity of DTI imaging allows for the visualization of nerve fiber bundles in the brain. This information can maximize the potential of completely removing the tumor, while avoiding damage to the fiber bundles that are directly related to motor functions of the patient.

“This study of six children with thalamic JPA showed that using advanced MRI technology can help identify distorted nerve fiber bundles around brain tumors,” said Jeffrey H. Wisoff, M.D., director of the Division of Pediatric Neurosurgery at NYU Langone Medical Center. “This allows an otherwise inoperable tumor to be completely removed which can hopefully lead to a cure.”

The co-authors of the study include Yaron Moshel, M.D., Ph.D., of the department of neurosurgery, David J. Monoky, M.D., clinical assistant professor in the department of radiology and Robert E. Elliott, M.D., in the department of neurosurgery at NYU Langone Medical Center.

For more information: www.communications.med.nyu.edu

Related Content

MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
Netherlands Hospital to Install State-of-the-Art MRI Ablation Center
News | Magnetic Resonance Imaging (MRI) | May 13, 2019
Imricor announced the signing of a commercial agreement with the Haga Hospital in The Hague, Netherlands to outfit a...
Screening MRI Detects BI-RADS 3 Breast Cancer in High-risk Patients
News | MRI Breast | May 09, 2019
When appropriate, short-interval follow-up magnetic resonance imaging (MRI) can be used to identify early-stage breast...
Clinical Trial Explores Opening Blood-Brain Barrier in Fight Against Alzheimer's

Vibhor Krishna, M.D., (right) fits David Shorr with a helmet-like device used in a new clinical trial for Alzheimer’s disease at The Ohio State University Wexner Medical Center. The device uses MRI-guided imaging to deliver focused ultrasound to specific areas of the brain to open the blood-brain barrier. Image courtesy of Ohio State University Wexner Medical Center.

News | Focused Ultrasound Therapy | May 09, 2019
May 9, 2019 — A new clinical trial at The Ohio State University Wexner Medical Center and two other sites is testing