News | May 11, 2012

Children's National Medical Center Breaks MRI Speed Sound Barrier

May 11, 2012 — A team of scientists led by Stanley Fricke, M.D., of the Children's National Medical Center in Washington, D.C., broke the "magnetic resonance imaging (MRI) sound barrier," a finding that could lead to a hundred-fold increase in MRI speed, according to a new clinical study published this week in the peer-reviewed journal Medical Physics

"Our ultimate goal," said Fricke, "is to image small children in seconds rather than minutes. In this way children will not need to be anesthetized prior to imaging."

Past attempts to substantially accelerate MR imaging failed because gradient pulse sequences (the technology responsible for image formation in an MR machine) can cause twitching or more serious nerve stimulation. To prevent such unwanted and potentially dangerous side effects, the U.S. Food and Drug Administration (FDA) and European regulators put in place limits on gradient strength and speed, based on older clinical studies that used relatively slow gradients. The new Medical Physics study used pulse sequences with rise 100 times faster than conventional MRI to prove that nerve stimulation could be eliminated by employing ultra-fast magnetic gradients.

According to Fricke: "The old speed limits may need to be reviewed in light of this new data. The new technology could lead to the adoption of MRI as a first-line method of assessing coronary artery disease, improve high-resolution brain mapping and implement low-cost dental MRI as a potential non-ionizing-radiation alternative to X-rays." Benjamin Shapiro, M.D., a team member from University of Maryland's Fischell Department of Bioengineering, has proposed using the high gradients with magnetic nanoparticles to improve image-guided minimally invasive therapy.  

The landmark study, funded by the National Institute of Neurological Disorders and Stroke and the National Heart Lung and Blood Institute, challenges decades of conventional wisdom in the MRI field. Increasing the speed and magnitude of gradients has been a long-sought goal in the medical imaging community. "Prior clinical studies concluded that nerve stimulation prevented the use of strong gradient pulse sequences," commented Fricke. He characterized the speed breakthrough as both metaphorically and literally "breaking the sound barrier," since the higher MRI frequency is beyond human hearing ability.

The ultra-strong and ultra-fast gradient technology to break the MRI sound barrier was produced with industry-leading instrumentation created by Weinberg Medical Physics LLC, an R&D lab in Bethesda, Md. Last week, the company was granted a patent for nonstimulating magnetic gradient generation methods.

Related Content

Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

Feature | ASTRO | October 20, 2018 | By Greg Freiherr
A linear accelerator combined with high-field MRI could soon be on the U.S. market. If U.S.