News | May 11, 2012

Children's National Medical Center Breaks MRI Speed Sound Barrier

May 11, 2012 — A team of scientists led by Stanley Fricke, M.D., of the Children's National Medical Center in Washington, D.C., broke the "magnetic resonance imaging (MRI) sound barrier," a finding that could lead to a hundred-fold increase in MRI speed, according to a new clinical study published this week in the peer-reviewed journal Medical Physics

"Our ultimate goal," said Fricke, "is to image small children in seconds rather than minutes. In this way children will not need to be anesthetized prior to imaging."

Past attempts to substantially accelerate MR imaging failed because gradient pulse sequences (the technology responsible for image formation in an MR machine) can cause twitching or more serious nerve stimulation. To prevent such unwanted and potentially dangerous side effects, the U.S. Food and Drug Administration (FDA) and European regulators put in place limits on gradient strength and speed, based on older clinical studies that used relatively slow gradients. The new Medical Physics study used pulse sequences with rise 100 times faster than conventional MRI to prove that nerve stimulation could be eliminated by employing ultra-fast magnetic gradients.

According to Fricke: "The old speed limits may need to be reviewed in light of this new data. The new technology could lead to the adoption of MRI as a first-line method of assessing coronary artery disease, improve high-resolution brain mapping and implement low-cost dental MRI as a potential non-ionizing-radiation alternative to X-rays." Benjamin Shapiro, M.D., a team member from University of Maryland's Fischell Department of Bioengineering, has proposed using the high gradients with magnetic nanoparticles to improve image-guided minimally invasive therapy.  

The landmark study, funded by the National Institute of Neurological Disorders and Stroke and the National Heart Lung and Blood Institute, challenges decades of conventional wisdom in the MRI field. Increasing the speed and magnitude of gradients has been a long-sought goal in the medical imaging community. "Prior clinical studies concluded that nerve stimulation prevented the use of strong gradient pulse sequences," commented Fricke. He characterized the speed breakthrough as both metaphorically and literally "breaking the sound barrier," since the higher MRI frequency is beyond human hearing ability.

The ultra-strong and ultra-fast gradient technology to break the MRI sound barrier was produced with industry-leading instrumentation created by Weinberg Medical Physics LLC, an R&D lab in Bethesda, Md. Last week, the company was granted a patent for nonstimulating magnetic gradient generation methods.

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Weight Loss Through Exercise Alone Does Not Protect Knees
News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Obese people who lose a substantial amount of weight can significantly slow down the degeneration
Neurofeedback Shows Promise in Treating Tinnitus

The standard approach to fMRI neurofeedback. Image courtesy of Matthew Sherwood, Ph.D.

News | Magnetic Resonance Imaging (MRI) | January 11, 2018
January 11, 2018 — Researchers using...
Male Triathletes May Be Putting Their Heart Health at Risk
News | Cardiac Imaging | January 09, 2018
Competitive male triathletes face a higher risk of a potentially harmful heart condition called myocardial fibrosis,...
State-of-the-Art MRI Technology Bypasses Need for Biopsy
News | Magnetic Resonance Imaging (MRI) | January 09, 2018
January 9, 2018 – The most common type of tumor found in the kidney is generally quite small (less than 1.5 in).
New Studies Show Brain Impact of Youth Football
News | Neuro Imaging | January 09, 2018
School-age football players with a history of concussion and high impact exposure undergo brain changes after one...
Overlay Init