News | May 28, 2008

Chemists Create Cancer-Detecting Nanoparticles

May 29, 2008 - Brown University scientists have found that magnetic nanoparticles can be helpful in locating cancerous cell clusters during MRI scans, and with a thinner coating, the particles also emit a stronger signal for the MRI to detect.

Brown University chemist Shouheng Sun and a team of researchers have created the smallest magnetic nanoparticles to date that can be employed for such use. The nanoparticles seek out tumor cells and attach themselves to them. Once the nanoparticles bind themselves to these cancer cells, the particles operate like radio transmitters, greatly aiding the MRI's detection capability.

The team created peptide-coated iron oxide nanoparticles - particles billionths of a meter in size. The researchers injected the particles into mice and tested their ability to locate a brain tumor cell called U87MG. Sun and his collaborators concentrated specifically on the nanoparticle's size and the thickness of the peptide coating, which ensures the nanoparticle attaches to the tumor cell.

Size is important because the idea is to create a nanoparticle that is small enough to navigate through the bloodstream and reach the diseased area. Bigger particles tend to stack up, creating the circulatory system's version of a traffic jam. Sun's team developed a nanoparticle that is about 8.4 nanometers in overall diameter - some six times smaller than the size of particles currently used in medicine.

The coating, while integral to the nanoparticles' attachment to the tumor cell, also is crucial to establishing the "signal-to-noise" ratio that a MRI uses. The thinner the coating, the stronger the emitted signal and vice versa. Sun's team outfitted their nanoparticles with a two-nanometer thick peptide coating - 10 times thinner than the coating available in popular MRI contrast agents such as Feridex. Sun's nanoparticles are like having a 50,000-watt radio transmitter versus a 150-watt station; it's easier for the MRI to "hear" the stronger signal and to hone in on the signal's source.

Another important feature of the team's work is discovering that the RGD peptide coating binds almost seamlessly to the U87MG tumor cell. The team plans to test the particle's ability to bind with other tumor cells in further animal experiments.

The results have been published online this week in the Journal of the American Chemical Society. Brown graduates students Jin Xie, Chenjie Xu and Sheng Peng collaborated on the research, along with Professor Xiaoyuan Chen and his associates from Stanford University.

For more information: www.brown.edu

Related Content

Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
IMRIS, Siemens Strengthen Collaboration in Hybrid OR Neurosurgical Market
News | Hybrid OR | October 24, 2018
IMRIS, Deerfield Imaging, in partnership with Siemens Healthineers, announced a strengthened collaboration to advance...
Carotid Artery MRI Improves Cardiovascular Disease Risk Assessment
News | Magnetic Resonance Imaging (MRI) | October 23, 2018
Magnetic resonance imaging (MRI) measurements of wall thickness in the carotid arteries improve cardiovascular disease...
The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

The Elekta Unity with 1.5T MRI embedded as a targeting system appeared at the annual meeting of the American Society of Radiation Oncology (ASTRO) in San Antonio, Texas. The system is being sold in Europe and could soon enter the U.S. marketplace. (Photo courtesy of Elekta)

Feature | ASTRO | October 20, 2018 | By Greg Freiherr
A linear accelerator combined with high-field MRI could soon be on the U.S. market. If U.S.