News | Neuro Imaging | April 27, 2018

Brain Scans May Help Diagnose Neurological, Psychiatric Disorders

Study shows that brain networks reliably track individuals over time

Brain Scans May Help Diagnose Neurological, Psychiatric Disorders

Brain networks from nine people were analyzed to generate the heat map above, which shows the areas that change the most (red) to the least (green), from person to person. A new study shows that individual brain networks are remarkably stable from day to day and while undertaking different tasks, suggesting that finding differences between individuals could help diagnose brain disorders or diseases. Image courtesy of Caterina Gratton.

April 27, 2018 — There are no laboratory tests to diagnose migraines, depression, bipolar disorder and many other ailments of the brain. Doctors typically gauge such illnesses based on self-reported symptoms and behavior. Now, a new study shows that a kind of brain scan called functional connectivity magnetic resonance imaging (fcMRI), which shows how brain regions interact, can reliably detect fundamental differences in how individual brains are wired. As such, the technique potentially could be used to distinguish healthy people from people with brain diseases or disorders, and provide insight into variations in cognitive ability and personality traits.

The findings were published April 18 in Neuron.

"This is a step toward realizing the clinical promise of functional connectivity MRI," said senior author Steven Petersen, Ph.D., the James S. McDonnell Professor of Cognitive Neuroscience in Neurology and a professor of neurosurgery, of biomedical engineering, of psychological and brain sciences, and of radiology. "Before we can develop diagnostic tests based on fcMRI, we need to know what it is actually measuring. We show here that it's not measuring what you're thinking, but how your brain is organized. That opens the door to an entire new field of clinical testing."

Petersen, postdoctoral researcher and first author Caterina Gratton, Ph.D., and colleagues analyzed a set of data collected by the Midnight Scan Club, a group of Washington University scientists who took turns undergoing myriad scans in an MRI machine late at night, when the demand for such machines and, consequently, the usage fees tend to be low.

The researchers analyzed data from more than 10 hours of fcMRI scans on each of nine people, collected in 10 separate one-hour sessions for each person. During the scans, each person performed tasks related to vision, memory, reading or motor skills, or rested quietly.

Functional MRI scans generate a dynamic map of the outer surface of the brain, showing changing hot spots of activity over time. To create a functional connectivity map, Gratton divided the brain's surface into 333 regions and identified areas that became active and inactive in unison. She then constructed brain network maps for each individual, showing patterns of correlation between parts of the brain.

The sheer quantity of data available on each person allowed her to analyze how much an individual's brain networks changed from day to day and with different mental tasks.

The answer? Not much.

"Brain networks captured by fcMRI are really about the individual," Gratton said. "Whether someone's watching a movie or thinking about her breakfast or moving her hands makes only a small difference. You can still identify that individual by her brain networks with a glance."

The consistency of the fcMRI scans makes them a promising diagnostic tool. Although the technique's potential to identify brain disorders and diseases was noted years ago, fcMRI-based diagnostic tests have yet to make their way into doctors' offices. Progress has been stymied by confusion over whether the scans reflect fundamental, stable features of the brain, or if they change with every passing thought.

Further, the researchers found that the technique was powerful enough to distinguish people who were extraordinarily alike. All of the scanned brains belonged to young, healthy scientists and doctors.

"We need more data before we can know what is normal variation in the population at large," Gratton said. "But the individual differences were really easy to pick up, even in a population that is really very similar. It's exciting to think that these individual differences may be related to personality, cognitive ability, or psychiatric or neurological disease. Thanks to this work, we know we have a reliable tool to study these possibilities."

For more information: www.cell.com/neuron

 

Related Content

An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
A cutting-edge magnet resonance imaging (MRI) technique to detect iron deposits in different brain regions can track declines in thinking, memory and movement in people with Parkinson's disease #Parkinsons #MRI

Summary steps of the processing pipeline for QSM reconstruction (phase pre-processing and map estimation) and whole brain/regional analysis. ANTs, advanced normalisation tools; MP-RAGE, magnetisation-prepared, 3D, rapid, gradient-echo; MSDI, multi-scale dipole inversion; QSM, quantitative susceptibility mapping; ROI, region of interest; SWI, susceptibility weighted imaging.

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — A cutting-edge...
Two magnetic resonance imaging (MRI) findings — joint capsule edema and thickness at the axillary recess, specifically — proved useful in predicting stiff shoulder in patients with rotator cuff tears, according to an ahead-of-print article in the May issue of the American Journal of Roentgenology (AJR)

A: Oblique coronal fat-suppressed T2-weighted MR image shows normal hypointense joint capsule at axillary recess (arrow). Note full-thickness tear of supraspinatus tendon (arrowheads) B: Oblique sagittal proton density MR image shows preserved subcoracoid fat triangle (asterisk). Image courtesy of the American Journal of Roentgenology (AJR)

News | Magnetic Resonance Imaging (MRI) | February 20, 2020
February 20, 2020 — Two ma...
Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.
Hyperfine Research, Inc. announced that it has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the world’s first bedside Magnetic Resonance Imaging (MRI) system

Hyperfine's point-of-care MRI wheels directly to the patient’s bedside, plugs into a standard electrical wall outlet, and is controlled via a wireless tablet. Photo courtesy of Business Wire

News | Magnetic Resonance Imaging (MRI) | February 12, 2020
February 12, 2020 — Hyperfine Research, Inc. announced that i
The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly

Image courtesy of GE Healthcare

News | Magnetic Resonance Imaging (MRI) | February 11, 2020
February 11, 2020 — The magnetic resonance imaging (MRI) contrast agents market is expected to grow rapidly in the fo
Accuray TomoTherapy total body irradiation
News | Radiation Therapy | February 07, 2020
February 7, 2020 — Accuray Incorporated announced that two new studies demonstrate the benefits of the ...
Gadolinium-based contrast agents

UT Dallas faculty members who collaborated with Dr. Jeremiah Gassensmith (center, back), associate professor of chemistry and biochemistry, include Dr. Lloyd Lumata (left, back), assistant professor of physics, and Dr. Steven Nielsen, associate professor of chemistry. Chemistry graduate students in Gassensmith’s lab include (from left, front) Oliva Brohlin, Arezoo Shahrivarkevishahi and Laurel Hagge.

News | Contrast Media | February 06, 2020
February 6, 2020 — University of Texas at Dallas researchers
Qynapse, a medical technology company, announced that it received U.S. Food and Drug Administration (FDA) 510(k) clearance for its QyScore software
News | Information Technology | February 04, 2020
February 4, 2020 — Qynapse, a medical technology company, anno