News | Neuro Imaging | April 27, 2018

Brain Scans May Help Diagnose Neurological, Psychiatric Disorders

Study shows that brain networks reliably track individuals over time

Brain Scans May Help Diagnose Neurological, Psychiatric Disorders

Brain networks from nine people were analyzed to generate the heat map above, which shows the areas that change the most (red) to the least (green), from person to person. A new study shows that individual brain networks are remarkably stable from day to day and while undertaking different tasks, suggesting that finding differences between individuals could help diagnose brain disorders or diseases. Image courtesy of Caterina Gratton.

April 27, 2018 — There are no laboratory tests to diagnose migraines, depression, bipolar disorder and many other ailments of the brain. Doctors typically gauge such illnesses based on self-reported symptoms and behavior. Now, a new study shows that a kind of brain scan called functional connectivity magnetic resonance imaging (fcMRI), which shows how brain regions interact, can reliably detect fundamental differences in how individual brains are wired. As such, the technique potentially could be used to distinguish healthy people from people with brain diseases or disorders, and provide insight into variations in cognitive ability and personality traits.

The findings were published April 18 in Neuron.

"This is a step toward realizing the clinical promise of functional connectivity MRI," said senior author Steven Petersen, Ph.D., the James S. McDonnell Professor of Cognitive Neuroscience in Neurology and a professor of neurosurgery, of biomedical engineering, of psychological and brain sciences, and of radiology. "Before we can develop diagnostic tests based on fcMRI, we need to know what it is actually measuring. We show here that it's not measuring what you're thinking, but how your brain is organized. That opens the door to an entire new field of clinical testing."

Petersen, postdoctoral researcher and first author Caterina Gratton, Ph.D., and colleagues analyzed a set of data collected by the Midnight Scan Club, a group of Washington University scientists who took turns undergoing myriad scans in an MRI machine late at night, when the demand for such machines and, consequently, the usage fees tend to be low.

The researchers analyzed data from more than 10 hours of fcMRI scans on each of nine people, collected in 10 separate one-hour sessions for each person. During the scans, each person performed tasks related to vision, memory, reading or motor skills, or rested quietly.

Functional MRI scans generate a dynamic map of the outer surface of the brain, showing changing hot spots of activity over time. To create a functional connectivity map, Gratton divided the brain's surface into 333 regions and identified areas that became active and inactive in unison. She then constructed brain network maps for each individual, showing patterns of correlation between parts of the brain.

The sheer quantity of data available on each person allowed her to analyze how much an individual's brain networks changed from day to day and with different mental tasks.

The answer? Not much.

"Brain networks captured by fcMRI are really about the individual," Gratton said. "Whether someone's watching a movie or thinking about her breakfast or moving her hands makes only a small difference. You can still identify that individual by her brain networks with a glance."

The consistency of the fcMRI scans makes them a promising diagnostic tool. Although the technique's potential to identify brain disorders and diseases was noted years ago, fcMRI-based diagnostic tests have yet to make their way into doctors' offices. Progress has been stymied by confusion over whether the scans reflect fundamental, stable features of the brain, or if they change with every passing thought.

Further, the researchers found that the technique was powerful enough to distinguish people who were extraordinarily alike. All of the scanned brains belonged to young, healthy scientists and doctors.

"We need more data before we can know what is normal variation in the population at large," Gratton said. "But the individual differences were really easy to pick up, even in a population that is really very similar. It's exciting to think that these individual differences may be related to personality, cognitive ability, or psychiatric or neurological disease. Thanks to this work, we know we have a reliable tool to study these possibilities."

For more information: www.cell.com/neuron

 

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 A brief article from Henry Ford Health System in Detroit, published today in Radiology, reports on the first presumptive case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy.

A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Image courtesy of the Radiological Society of North America (RSNA)

News | Coronavirus (COVID-19) | March 31, 2020
March 31, 2020 — A brief article fr
A University of Colorado Cancer Center study published in the Journal of the National Cancer Institute shows an important predictor of PET-CT use

Rustain Morgan, M.D., and colleagues show racial/ethnic disparities in use of important imaging during lung cancer diagnosis. Photo courtesy of University of Colorado Cancer Center

News | PET-CT | March 12, 2020
March 12, 2020 — The use of PET-CT
SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories

Example: SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories ((a), fatty; (b), scattered; (c), heterogeneously dense; (d), extremely dense). Note the quantitative scale indicating that absolute measurements are obtained. Image courtesy of MDPI

News | Breast Imaging | March 10, 2020
March 10, 2020 — ...
Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

News | Computed Tomography (CT) | March 06, 2020
March 6, 2020 — Researchers at the National Institutes of Health a
M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers

M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers. (c) University of Maryland Greenebaum Comprehensive Cancer Center

News | Prostate Cancer | March 05, 2020
March 5, 2020 — Using a combination of...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la