News | September 26, 2007

Biopsies Reduced Using Proton MR Spectroscopy with MRI

September 27, 2007 - Proton magnetic resonance spectroscopy (1H MRS) used in conjunction with magnetic resonance imaging (MRI) can aid radiologists in diagnosing breast cancer while reducing the number of false-positive results and invasive biopsies, according to a study focusing on non-mass enhancing breast lesions. The study, conducted at Memorial Sloan-Kettering Cancer Center in New York City, appears in the October issue of the journal Radiology.

"All of the cancers present in this study were identified with MR spectroscopy," said the study's lead author, Lia Bartella, M.D., director of breast imaging at Eastside Diagnostic Imaging in New York City.

The American Cancer Society estimates that 212,920 women will be diagnosed with breast cancer in the United States this year. MRI is playing an increasingly important role in the screening of women at high risk for breast cancer. However, while MRI depicts more abnormal findings than other breast screening procedures, it is not 100 percent accurate in distinguishing benign from malignant lesions, resulting in a large number of breast biopsy procedures recommended on the basis of imaging findings. Currently, approximately 80 percent of breast lesions biopsied are found to be benign.

Non-mass enhancing lesions are characterized by enhancement of an area that is not a mass or lump and may extend over large or small regions. Non-mass lesions occur with benign hormonal changes, but can also signify malignancy. Biopsy is often required to distinguish benign non-mass lesions from cancer.

With MR spectroscopy, which adds only 10 minutes to a standard MRI exam, the radiologist is able to see the chemical make-up of a tumor. In most cases, the results indicate whether or not the lesion is cancerous without the need for biopsy.

"Non-mass enhancing lesions frequently pose a dilemma to the radiologist when evaluating the breast for the presence of cancer, especially in premenopausal women," Dr. Bartella said. "Potentially, the use of proton MR spectroscopy may help decrease the number of benign biopsies for non-mass enhancing lesions."

For the study, Dr. Bartella and colleagues performed ¹H MRS on 32 non-mass enhancing breast lesions in 32 women, age 20 to 63. Twenty-five of the patients had lesions that had been labeled suspicious at MRI.

¹H MRS can provide radiologists with chemical information about a lesion by measuring the levels of choline compounds, which are markers of an active tumor. In the study, positive choline findings were present in 15 of 32 lesions, including all 12 cancers, giving ¹H MRS a specificity of 85 percent and a sensitivity of 100 percent. If only the lesions with positive choline findings had been biopsied, 17 (68 percent) of 25 lesions may have been spared invasive biopsies and none of the cancers would have been missed.

"By performing MR spectroscopy of the suspicious lesion after an MRI scan, we can noninvasively see which tumors show elevated choline levels and are likely malignant," Dr. Bartella said. "This chemical information added to the information provided by MRI can eliminate the need for biopsy to find out what the lesion is made of."

Dr. Bartella hopes that in the future, MR spectroscopy will be incorporated into routine diagnostic breast MRI procedures, significantly decreasing the need for needle biopsies.

"Enhancing Nonmass Lesions in the Breast: Evaluation with Proton (1H) MR Spectroscopy." Co-authors of the paper are Sunitha B. Thakur, Ph.D., Elizabeth A. Morris, M.D., D. David Dershaw, M.D., Wei Huang, Ph.D., Eugenia Chough, B.A., Maria C. Cruz, B.A., and Laura Liberman, M.D.

Source: Radiological Society of North America

For more information: www.rsna.org

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init