News | Neuro Imaging | February 06, 2017

Astronauts' Brains Change Shape During Spaceflight

MRI exams reveal structural changes in gray matter based on length of time spent in space

astronaut brain changes, spaceflight, MRI, Nature Microgravity

Image courtesy of NASA

February 6, 2017 — Magnetic resonance imaging (MRI) exams before and after space missions reveal that astronauts' brains compress and expand during spaceflight, according to a University of Michigan study.

The findings could have applications for treating other health conditions that affect brain function, said principal investigator Rachael Seidler, U-M professor of kinesiology and psychology.

The study, believed to be the first to examine structural changes that take place in astronauts' brains during spaceflight, found that the volume of gray matter increased or decreased, and the extent of the alteration depended on the length of time spent in space.

Seidler and colleagues examined structural MRIs in 12 astronauts who spent two weeks as shuttle crew members, and 14 who spent six months on the International Space Station. All experienced increases and decreases in gray matter in different parts of the brain, with more pronounced changes the longer the astronauts spent in space.

"We found large regions of gray matter volume decreases, which could be related to redistribution of cerebrospinal fluid in space," Seidler said. "Gravity is not available to pull fluids down in the body, resulting in so-called puffy face in space. This may result in a shift of brain position or compression."

The researchers also found increases in gray matter volume in regions that control leg movement and process sensory information from legs, which may reflect changes related to the brain learning how to move in microgravity. These changes were greater in space station astronauts because their brains were learning and adapting 24/7.

"It's interesting because even if you love something you won't practice more than an hour a day," Seidler said.

But the brain changes researchers observed were equivalent to someone practicing a new skill round-the-clock.

"In space, it's an extreme example of neuroplasticity in the brain because you're in a microgravity environment 24 hours a day," Seidler said.

Though they have not pinpointed the exact nature of the changes yet, the findings may lead to new ways of thinking about certain health conditions — for example, people on long-duration bed rest or people who have normal pressure hydrocephalus, a condition in which cerebrospinal spinal fluid accumulates in ventricles in the brain and causes pressure.

Seidler said the brain changes could reflect new connections between neurons, and she's leading another long-term study that will help determine the repercussions on cognition and physical performance, as well as how long the brain changes last. For example, even after balance returns, the brain might still recruit different pathways to compensate for the structural brain changes caused by spaceflight.

"The behavior may return to normal, but the way the brain controls the behavior may change," she said.

These results largely parallel findings from a long-term bed rest study that Seidler is leading, in which volunteers spent up to three months in downward tilted position, and brains shifted up.

The research is supported by a grant from NASA.

The study, "Brain structural plasticity with spaceflight," appeared in the journal Nature Microgravity.

For more information: www.nature.com/npjmgrav

References

Kopplemans, V., Bloomberg, J.J., Mulavara, A.P., Seidler, R.D. "Brain structural plasticity with spaceflight," Nature Microgravity. Published online Dec. 19, 2016. doi:10.1038/s41526-016-0001-9

Related Content

Philips Launches IntelliSpace Discovery Research Platform at RSNA
Technology | Artificial Intelligence | November 20, 2018
Ahead of the 2018 Radiological Society of North America Annual Meeting (RSNA), Nov. 25-30 in Chicago, Royal Philips...
Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study
News | Cardiovascular Ultrasound | November 19, 2018
Medical artificial intelligence (AI) company Bay Labs and Northwestern Medicine announced that the first patient has...
Immune Inflammatory Levels Linked to Disease-Free Survival in Prostate Cancer
News | Prostate Cancer | November 19, 2018
Data from a validation study of a high-risk prostate cancer trial suggests that higher levels of pretreatment...
Canon Medical Receives FDA Clearance for Vantage Orian 1.5T MRI
Technology | Magnetic Resonance Imaging (MRI) | November 15, 2018
Canon Medical Systems USA Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) on its new...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
MaxQ AI Receives FDA Clearance for Accipio Ix Intracranial Hemorrhage Platform
Technology | Artificial Intelligence | November 07, 2018
MaxQ AI announced that its Accipio Ix intracranial hemorrhage (ICH) detection software has received 510(k) clearance...