Feature | May 01, 2014

UC San Diego Uses MRI-Guide Biopsy to Improve Brain Cancer Diagnoses

May 1, 2014 — Neurosurgeons at UC San Diego Heath System have, for the first time, combined real-time magnetic resonance imaging (MRI) technology with novel noninvasive cellular mapping techniques to develop a new biopsy approach that increases the accuracy of diagnosis for patients with brain cancer.

“There are many different types of brain cancer. Making an accurate diagnosis is paramount because the diagnosis dictates the subsequent course of treatment,” said Clark C. Chen, M.D., Ph.D., vice chairman of research, division of neurosurgery, UC San Diego School of Medicine. “For instance, the treatment of glioblastoma is fundamentally different than the treatment for oligodendroglioma, another type of brain tumor.”

Chen said that as many as one third of brain tumor biopsies performed in the traditional manner can result in misdiagnosis. He cited two challenges with conventional biopsy.

“First, because distinct areas of brain tumors exhibit different cell densities and higher cell densities are generally associated with higher tumor grade, biopsies taken from one region may yield a different diagnosis than if another area is biopsied,” said Chen. “Second, because tumors are hidden within the brain, surgeons must use mathematical algorithms to target where the biopsy should occur. As with all calculations, the process is subject to errors that the surgeon cannot easily correct in real time once the biopsy has begun.”

The research team applied an MRI technique called restriction spectrum imaging (RSI) to visualize the parts of the brain tumor that contain different cell densities. “RSI allows us to identify the regions of the cell that are most representative of the entire tumor,” said Chen. “By targeting biopsies to these areas, we minimize the number of biopsies needed but still achieve a sampling that best characterizes the entire tumor.”

To ensure a targeted biopsy, Chen performs the procedure in the MRI suite while the patient is under general anesthesia. Because conventional biopsy equipment cannot be used in the MRI, Chen uses a special MRI-compatible system called ClearPoint. This system utilizes an integrated set of hardware, software and surgical equipment to allow the surgeon to target and visualize the path of the biopsy as well as the actual biopsy site intraoperatively.

“Surgeons have been performing brain biopsies in a near blind manner for the past 50 years. The ability to see where the biopsy needle is located and where the biopsy is being performed in real time is groundbreaking,” said Chen. “This combination of technologies gives me an opportunity to immediately adjust my surgical approach while minimizing risk.”

The study and application of RSI is currently being performed at the newly established Center for Translational Imaging and Personalized Medicine and Center for Theoretical and Applied Neuro-Oncology at UC San Diego School of Medicine. The RSI technology was developed by Anders M. Dale, Ph.D., vice chairman, department of radiology, UC San Diego School of Medicine. The ClearPoint system was developed by MRI Interventions Inc., of Irvine, Calif.

For more information: http://cancer.ucsd.edu/brain

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Weight Loss Through Exercise Alone Does Not Protect Knees
News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Obese people who lose a substantial amount of weight can significantly slow down the degeneration
Neurofeedback Shows Promise in Treating Tinnitus

The standard approach to fMRI neurofeedback. Image courtesy of Matthew Sherwood, Ph.D.

News | Magnetic Resonance Imaging (MRI) | January 11, 2018
January 11, 2018 — Researchers using...
Male Triathletes May Be Putting Their Heart Health at Risk
News | Cardiac Imaging | January 09, 2018
Competitive male triathletes face a higher risk of a potentially harmful heart condition called myocardial fibrosis,...
State-of-the-Art MRI Technology Bypasses Need for Biopsy
News | Magnetic Resonance Imaging (MRI) | January 09, 2018
January 9, 2018 – The most common type of tumor found in the kidney is generally quite small (less than 1.5 in).
New Studies Show Brain Impact of Youth Football
News | Neuro Imaging | January 09, 2018
School-age football players with a history of concussion and high impact exposure undergo brain changes after one...
Overlay Init