Feature | Magnetic Resonance Imaging (MRI) | December 22, 2016

Runners' Brains May Be More Connected, Research Shows

MRI scans show that running may affect the structure and function of the brain in ways similar to complex tasks like playing a musical instrument

MRI brain

If you're thinking about taking up running as your New Year's resolution and still need some convincing, consider this: MRI scans reveal that endurance runners' brains have greater functional connectivity than the brains of more sedentary individuals.

University of Arizona researchers compared brain scans of young adult cross country runners to young adults who don't engage in regular physical activity. The runners, overall, showed greater functional connectivity — or connections between distinct brain regions — within several areas of the brain, including the frontal cortex, which is important for cognitive functions such as planning, decision-making and the ability to switch attention between tasks.

Although additional research is needed to determine whether these physical differences in brain connectivity result in differences in cognitive functioning, the current findings, published in the journal Frontiers in Human Neuroscience, help lay the groundwork for researchers to better understand how exercise affects the brain, particularly in young adults.

UA running expert David Raichlen, an associate professor of anthropology, co-designed the study with UA psychology professor Gene Alexander, who studies brain aging and Alzheimer's disease as a member of the UA's Evelyn F. McKnight Brain Institute.

"One of the things that drove this collaboration was that there has been a recent proliferation of studies, over the last 15 years, that have shown that physical activity and exercise can have a beneficial impact on the brain, but most of that work has been in older adults," Raichlen said.

"This question of what's occurring in the brain at younger ages hasn't really been explored in much depth, and it's important," he said. "Not only are we interested in what's going on in the brains of young adults, but we know that there are things that you do across your lifespan that can impact what happens as you age, so it's important to understand what's happening in the brain at these younger ages."

Along with their colleagues, Raichlen and Alexander compared the MRI scans of a group of male cross country runners to the scans of young adult males who hadn't engaged in any kind of organized athletic activity for at least a year. Participants were roughly the same age — 18 to 25 — with comparable body mass index and educational levels.

The scans measured resting state functional connectivity, or what goes on in the brain while participants are awake but at rest, not engaging in any specific task.

The findings shed new light on the impact that running, as a particular form of exercise, may have on the brain.

Previous studies have shown that activities that require fine motor control, such as playing a musical instrument, or that require high levels of hand-eye coordination, such as playing golf, can alter brain structure and function. However, fewer studies have looked at the effects of more repetitive athletic activities that don't require as much precise motor control — such as running. Raichlen's and Alexander's findings suggest that these types of activities could have a similar effect.

"These activities that people consider repetitive actually involve many complex cognitive functions — like planning and decision-making — that may have effects on the brain," Raichlen said.

Since functional connectivity often appears to be altered in aging adults, and particularly in those with Alzheimer's or other neurodegenerative diseases, it's an important measure to consider, Alexander said. And what researchers learn from the brains of young adults could have implications for the possible prevention of age-related cognitive decline later on.

"One of the key questions that these results raise is whether what we're seeing in young adults — in terms of the connectivity differences — imparts some benefit later in life," said Alexander, who also is a professor of neuroscience and physiological sciences. "The areas of the brain where we saw more connectivity in runners are also the areas that are impacted as we age, so it really raises the question of whether being active as a young adult could be potentially beneficial and perhaps afford some resilience against the effects of aging and disease."

For more information: uanews.arizona.edu/story/runners-brains-may-have-more-connectivity-ua-research-shows

Related Content

MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Videos | Radiation Therapy | February 15, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
Videos | Angiography | February 08, 2019
This is an example of an arterial venous malformation (AVM) in the brain imaged on a...
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Medtronic Recalls Synergy Cranial Software and Stealth Station S7 Cranial Software
News | Procedure Navigation Systems | February 05, 2019
Medtronic is recalling the Synergy Cranial Software and StealthStation S7 Cranial Software used with the StealthStation...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...