Feature | Magnetic Resonance Imaging (MRI) | December 22, 2016

Runners' Brains May Be More Connected, Research Shows

MRI scans show that running may affect the structure and function of the brain in ways similar to complex tasks like playing a musical instrument

MRI brain

If you're thinking about taking up running as your New Year's resolution and still need some convincing, consider this: MRI scans reveal that endurance runners' brains have greater functional connectivity than the brains of more sedentary individuals.

University of Arizona researchers compared brain scans of young adult cross country runners to young adults who don't engage in regular physical activity. The runners, overall, showed greater functional connectivity — or connections between distinct brain regions — within several areas of the brain, including the frontal cortex, which is important for cognitive functions such as planning, decision-making and the ability to switch attention between tasks.

Although additional research is needed to determine whether these physical differences in brain connectivity result in differences in cognitive functioning, the current findings, published in the journal Frontiers in Human Neuroscience, help lay the groundwork for researchers to better understand how exercise affects the brain, particularly in young adults.

UA running expert David Raichlen, an associate professor of anthropology, co-designed the study with UA psychology professor Gene Alexander, who studies brain aging and Alzheimer's disease as a member of the UA's Evelyn F. McKnight Brain Institute.

"One of the things that drove this collaboration was that there has been a recent proliferation of studies, over the last 15 years, that have shown that physical activity and exercise can have a beneficial impact on the brain, but most of that work has been in older adults," Raichlen said.

"This question of what's occurring in the brain at younger ages hasn't really been explored in much depth, and it's important," he said. "Not only are we interested in what's going on in the brains of young adults, but we know that there are things that you do across your lifespan that can impact what happens as you age, so it's important to understand what's happening in the brain at these younger ages."

Along with their colleagues, Raichlen and Alexander compared the MRI scans of a group of male cross country runners to the scans of young adult males who hadn't engaged in any kind of organized athletic activity for at least a year. Participants were roughly the same age — 18 to 25 — with comparable body mass index and educational levels.

The scans measured resting state functional connectivity, or what goes on in the brain while participants are awake but at rest, not engaging in any specific task.

The findings shed new light on the impact that running, as a particular form of exercise, may have on the brain.

Previous studies have shown that activities that require fine motor control, such as playing a musical instrument, or that require high levels of hand-eye coordination, such as playing golf, can alter brain structure and function. However, fewer studies have looked at the effects of more repetitive athletic activities that don't require as much precise motor control — such as running. Raichlen's and Alexander's findings suggest that these types of activities could have a similar effect.

"These activities that people consider repetitive actually involve many complex cognitive functions — like planning and decision-making — that may have effects on the brain," Raichlen said.

Since functional connectivity often appears to be altered in aging adults, and particularly in those with Alzheimer's or other neurodegenerative diseases, it's an important measure to consider, Alexander said. And what researchers learn from the brains of young adults could have implications for the possible prevention of age-related cognitive decline later on.

"One of the key questions that these results raise is whether what we're seeing in young adults — in terms of the connectivity differences — imparts some benefit later in life," said Alexander, who also is a professor of neuroscience and physiological sciences. "The areas of the brain where we saw more connectivity in runners are also the areas that are impacted as we age, so it really raises the question of whether being active as a young adult could be potentially beneficial and perhaps afford some resilience against the effects of aging and disease."

For more information: uanews.arizona.edu/story/runners-brains-may-have-more-connectivity-ua-research-shows

Related Content

Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence. Graphic courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Artificial Intelligence | April 12, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here

Gamma Knife radiosurgery has become the preferred radiation therapy option for patients with brain tumors at facilities like the Northwestern Medicine Cancer Center, pictured here. The technology is favored largely for its ability to precisely target tumors while sparing healthy tissue.

Feature | Radiation Oncology | April 11, 2019 | By Jeff Zagoudis
Brain tumors are some of the most complicated forms of cancer to treat due to their extremely sensitive location.
Deep Lens Closes Series A Financing for Digital AI Pathology Platform
News | Digital Pathology | April 09, 2019
Digital pathology company Deep Lens Inc. announced the closing of a $14 million Series A financing that will further...
Uterine Fibroid Embolization Safer and as Effective as Surgical Treatment
News | Interventional Radiology | April 05, 2019
Uterine fibroid embolization (UFE) effectively treats uterine fibroids with fewer post-procedure complications compared...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa