Feature | October 03, 2014

Nuclear Medicine is the New Personalized Medicine

Nuclear Medicine is the New Personalized Medicine

Photo courtesy of Siemens Healthcare.

Remember the race to map the human genome, when the widest international collaboration in history went up against the efforts of a private corporation, Celera? The race ended in a tie in 2001 with near simultaneous publications in Nature (public effort) and Science (Celera) as both public and private sectors served up analyses of about 80 percent of the genome. Unfortunately, the outcome of this Herculean effort did not come close to meeting expectations. 

Mapping the human genome was supposed to unlock the secrets of disease and make possible truly personalized medicine. It was to have explained why some people fall ill while others do not — and how those who become ill could be best treated. It just didn’t work out that way. 

Now more than a decade later, personalized medicine, based on genetic information, is decades more away. Even just understanding the genome still eludes the grasp of researchers.

What did come from those early days of hyperbole was recognition of how badly the public wants personalized medicine. Patients and providers alike are fed up with medicine as an art. They want it to be a science. That is what personalized medicine was supposed to be. And it is now what nuclear medicine aspires to be.

Once hampered by the negative connotations of its first name, nuclear medicine reinvented itself shortly after the turn of the century, rebranding itself as “molecular imaging.” Measurements of radiotracer uptake complement the visualization of metabolic activity, particularly in positron emission tomography/computed tomography (PET/CT). This hybrid is routinely leveraged to calculate the dose of therapeutic radionuclides and to gauge the effect of therapies on malignant tumors. 

If there’s a fly in the ointment, it’s that the promoters of molecular imaging as the harbinger of personalized medicine may be promising too much. We hear about the commitment of companies in this industry to personalized medicine and the latest gizmo or upgraded gadget that makes it real. To their credit, however, they are careful to describe successes within narrow confines, as in the case of peptide receptor radionuclide therapy (PRRT).

PRRT is on the front lines of this new personalized medicine. Its somatostatin analogs, which selectively bind to the cellular receptors in neuroendocrine tumors, carry a gallium radionuclide that simultaneously emits radiation that kills tumors and makes the analogs visible and quantifiable with PET/CT. The end effect of successful and measurable treatment is decreased tumor size, reduced symptoms and even a halt in tumor progression in many patients with neuroendocrine tumors.

Similar results have been achieved in patients with esophageal and lung cancers, as well as diffuse large B-cell lymphoma, using radiotherapeutic compounds complemented by FDG imaging and quantitation with PET/CT. The potential to do the same with even some advanced forms of single-proton emission computed tomography (SPECT)/CT has also been demonstrated.

Anatomically based tools, such as magnetic resonance imaging (MRI) and CT, pale by comparison. Whereas these modalities record the dimensions of a tumor, those dimensions may be inflamed by the cellular debris that comes from successful chemo- or radiotherapy. Not so with molecular imaging, which demonstrates visually and quantitatively, at least in some cases, the presence of viable tumor. Trends in uptake values graphically show changes in tumor metabolism, giving providers an indication of whether and how well therapies are doing.  

To be sure, molecular medicine is not what personalized medicine was supposed to be. But it is a step in the right direction. Perhaps most importantly, it is a step that can — and is — being taken. 

That it does not spring from knowledge gained by mapping the human genome, I could care less.

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group. Read more of his views on his blog at www.itnonline.com.

Related Content

GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...
MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for radiation therapy displayed for the first time since gaining FDA clearance in 2018. It was displayed at the American Society for Radiotherapy and Oncology (ASTRO) 2018 annual meeting. Read more about this system at ASTRO 2018. #ASTRO18 #ASTRO2018
360 Photos | 360 View Photos | November 07, 2018
This is the Siemens Magnetom Sola RT edition 1.5T MRI system optimized for...
A PET/CT head and neck cancer scan.

A PET/CT head and neck cancer scan.

Feature | Nuclear Imaging | November 05, 2018 | By Sabyasachi Ghosh
“Experimental validation implemented in real-life situations and not theoretical claims exaggerating small advantages
Fans of Opposing Soccer Teams Perceive Games Differently

Image courtesy of University of York

News | Neuro Imaging | October 25, 2018
Scientists have scanned the brains of die-hard soccer fans to find out why supporters of rival teams often have very...
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....