Feature | January 06, 2014

MRI Technique Illuminates Wrist in Motion

UC Davis active MRI systems wrist
January 6, 2014 — University of California, Davis radiologists, medical physicists and orthopaedic surgeons have found a way to create "movies" of the wrist in motion using a series of brief magnetic resonance imaging (MRI) scans. Called "Active MRI," the technique could be useful in diagnosing subtle changes in physiology that indicate the onset of conditions such as wrist instability. 
 
The outcome of the team's first test of the new technique is published online in the journal PLOS ONE, titled “Real-Time Magnetic Resonance Imaging (MRI) During Active Wrist Motion — Initial Observations.”
 
"These fast images are like a live-action movie," said Robert Boutin, professor of radiology, UC Davis, and lead author of the study. "The movie can be slowed, stopped or even reversed as needed. Now patients can reproduce the motion that's bothering them while they're inside the scanner, and physicians can assess how the wrist is actually working. After all, some patients only have pain or other symptoms with movement."
 
Wrist instability, explained Abhijit Chaudhari, Ph.D., assistant professor of radiology, UC Davis, and senior author, occurs when carpal bones become misaligned and affect joint function, often as a result of trauma that injures the ligaments between wrist bones. It causes abnormal mobility and chronic pain that can lead to osteoarthritis, a major socioeconomic burden to patients and healthcare systems. Good outcomes in managing the condition are more likely with early diagnosis, when less-invasive treatments are possible.
 
Methods such as dynamic computed tomography (CT) and fluoroscopy can image the moving wrist, but these approaches involve radiation and do not show soft tissue such as ligaments — a major part of the wrist's intricate architecture — as well as MRI scans.
 
"MRI scans provide detailed anatomical information of wrist structures without using ionizing radiation, but they cannot help diagnose problems with bone or tendon position that are best seen when the wrist is moving," said Chaudhari. "Active MRI provides a detailed and 'real time' view of the kinesiology of the wrist in action using a widely available and safe technology."
 
The researchers overcame a number of hurdles in adapting MRI capabilities to providing moving images. A complete MRI exam usually takes 30 to 45 minutes, with each image set requiring at least three minutes — not nearly fast enough to make a video. The team developed a new MRI protocol that takes one image every 0.5 seconds, delivering a series of images in 30 seconds.
 
Another barrier was the presence of imaging errors called banding artifacts. Movement of the bones in the wrist area can interfere with the scanner's magnetic field, creating signal drop-offs. The resulting dark bands can obscure the moving wrist. The team overcame this problem with dielectric pads, which stabilize the magnetic field and shift artifacts away from the area of interest and to the side, allowing doctors to clearly see the wrist bones.
 
For the current study, Active MRI was tested on 15 wrists of 10 subjects with no symptoms of wrist problems. The participants' wrists were imaged as they performed motions such as clenching the fist, rotating the wrist and waving the hand side-to-side. Each exam lasted 10 minutes.
 
"It's quite phenomenal that we can look inside the body while it's in action using MRI," said Boutin. "Routine MRI provides exquisite details, but only if the body is completely motionless in one particular position. But bodies are made to move. We think Active MRI will be a valuable tool in augmenting traditional, static MRI tests."
 
"Our next step is to validate the technology by using it on patients with symptoms of wrist instability," said Chaudhari. "We also want to use Active MRI to study sex distinctions in musculoskeletal conditions, including why women tend to be more susceptible to hand osteoarthritis and carpal tunnel syndrome."
 
Additional authors were Michael Buonocore, M.D., Ph.D., Igor Immerman, M.D., Zachary Ashwell, Gerald Sonico and Robert Szabo, M.D., all from UC Davis. The National Institutes of Health (NIH), UC Davis Imaging Research Center and UC Davis Department of Radiology funded the research.
 
For more information: www.ucdmc.ucdavis.edu, www.plosone.org

Related Content

New Studies Highlight MRI Use for Prostate Cancer Screening and Management
News | Magnetic Resonance Imaging (MRI) | May 21, 2018
Three new studies presented at the 113th annual meeting of the American Urological Association (AUA) highlight the...
MRI "Glove" Provides New Look at Hand Anatomy

An experiment showed that a glove-shaped detector could yield images of bones, cartilage, and muscles interacting as a hand 'plays piano.' Traditionally, MRI had required patients to remain strictly motionless.Image courtesy of Nature Biomedical Engineering; Bei Zhang, Martijn Cloos, Daniel Sodickson

News | Magnetic Resonance Imaging (MRI) | May 17, 2018
A new kind of magnetic resonance imaging (MRI) component in the shape of a glove delivers the first clear images of...
FDA Clears Medic Vision's iQMR MRI Image Enhancement Technology

Image courtesy of Medic Vision Imaging Solutions

Technology | Magnetic Resonance Imaging (MRI) | May 15, 2018
May 15, 2018 — Medic Vision Imaging Solutions Ltd. announced that the U.S.
Impaired Brain Pathways May Cause Attention Problems After Stroke
News | Neuro Imaging | May 10, 2018
Damage to some of the pathways that carry information throughout the brain may be responsible for attention deficit in...
Functional MRI Assesses Crocodile Brain Listening to Classical Music

A research team from Ruhr-Universität Bochum (RUB) used functional MRI to assess the brain patterns of a Nile crocodile and determine what happens when the animal hears complex sounds. Image courtesy of Felix Ströckens, M.D./Proceedings of the Royal Society B: Biological Sciences

News | Magnetic Resonance Imaging (MRI) | May 08, 2018
May 8, 2018 — In a first, an international research team from the Department of Biopsychology at Ruhr-Universität Boc
7T MRI Provides Precise 3-D Maps of Brain Activity

fMRI of a patient with secondary glioblastoma (brain tumor). Functional localization was measured before surgery by means of a motor task (hand opening and closing). On the left, the uncorrected scan, on the right the result after dynamic image correction. Image courtesy of Quelle: MUW/ High Field MR Centre of Excellence

 

News | Magnetic Resonance Imaging (MRI) | May 03, 2018
With the support of the Austrian Science Fund FWF, researchers from Vienna have developed methods to improve functional...
Cardiac MRI being performed at the DeBakey Heart Hospital.

Cardiac MRI being performed at the DeBakey Heart Hospital.

Feature | Cardiac Imaging | May 03, 2018 | By Jeff Zagoudis
Magnetic resonance imaging (MRI) for cardiac assessment provides a radiation-free alternative to other commonly used...
Esaote Change of Ownership Completed
News | Ultrasound Imaging | April 30, 2018
The acquisition of biomedical equipment company Esaote SpA’s share capital was completed on April 19, the company...
ViewRay Unveils New Soft Tissue Visualization Technologies for MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | April 30, 2018
ViewRay Inc. announced new magnetic resonance imaging (MRI) technologies under development for its MRIdian Linac...
Brain Scans May Help Diagnose Neurological, Psychiatric Disorders

Brain networks from nine people were analyzed to generate the heat map above, which shows the areas that change the most (red) to the least (green), from person to person. A new study shows that individual brain networks are remarkably stable from day to day and while undertaking different tasks, suggesting that finding differences between individuals could help diagnose brain disorders or diseases. Image courtesy of Caterina Gratton.

News | Neuro Imaging | April 27, 2018
There are no laboratory tests to diagnose migraines, depression, bipolar disorder and many other ailments of the brain...
Overlay Init