Feature | May 20, 2014

GE Healthcare Partners With Tesla Engineering to Produce Ultra High-Field 7T MRI Systems

GE Healthcare Partners With Tesla Engineering to Produce Ultra High-Field 7T MRI Systems

May 20, 2014 — GE Healthcare and Tesla Engineering Ltd. are collaborating to produce 7T human whole-body magnetic resonance imaging (MRI) scanners. The companies made the announcement at the joint meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) and the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) in Milan.

Ultra high-field MRI systems are used for scientific and medical research, primarily for morphological and functional imaging of the brain while steadily expanding to all anatomies. Researchers using ultra high-field scanners hope their work will contribute to earlier disease detection, more accurate diagnosis and increased effectiveness of investigational therapies for disorders and diseases such as cancer, stroke, epilepsy, drug abuse, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, attention deficit disorder, multiple sclerosis, head injury, visual disorders and schizophrenia.

Tesla Engineering Ltd. is currently building a new factory in Storrington, U.K., to manufacture the 7 Tesla magnets. They have recruited several key engineering and management staff with extensive experience in the design and manufacturing of ultra high-field magnets. The first unit from the new production line is committed to GE and scheduled to ship in late 2015.

“This agreement will enable GE to deepen and broaden our collaborations with leading MRI academics and visionaries, sharing our collective expertise and missions in technology, science and medicine,” said Richard Hausmann, president and CEO of GE Healthcare, MR. “The GE 7T community in the U.S., Europe and Asia has already demonstrated breakthrough observations and understanding of Alzheimer’s disease, traumatic brain injury and cognitive physiology. Together, we will continue to push the frontiers of MRI for neuroscience and other applications.”

“Tesla is very pleased to collaborate with GE and to take a leadership position in the continuing evolution of MR magnet technology,” said Mike Begg, group managing director, Tesla Engineering Ltd. “This is a solid business opportunity for us that complements and builds upon our existing strengths in superconducting magnet technology, as well as our strong core technology positions in cryogenics.”

For more information: www.gehealthcare.com, www.tesla.co.uk

Related Content

Imaging Biometrics and Medical College of Wisconsin Awarded NIH Grant
News | Neuro Imaging | September 09, 2019
Imaging Biometrics LLC (IB), in collaboration with the Medical College of Wisconsin (MCW), has received a $2.75 million...
ASNC Announces Multisocietal Cardiac Amyloidosis Imaging Consensus
News | Cardiac Imaging | September 09, 2019
September 9, 2019 — The American Society of Nuclear Cardiology (ASNC) published a new expert consensus document along
AJR Publishes Gender Affirmation Surgery Primer for Radiologists. transgender radiology images,

Scout image from contrast-enhanced CT shows erectile implant; stainless steel and silicone anchors (arrow) transfixed to pubic bone are asymmetric.

News | Orthopedic Imaging | September 05, 2019
September 5, 2019 — An ahead-of-print article published in the December issue of the American Journal of Roentgen
Neurological Brain Markers Might Detect Risk for Psychotic Disorders

Researchers at the University of Missouri used MRI scans similar to this photo to find neurological markers in the human brain. These markers can be used to detect people at risk for developing psychotic disorders and to understand when this risk has been successfully treated. Image courtesy of Marquette University/John Kerns.

News | Neuro Imaging | September 04, 2019
Help may be on the way for people who might lose contact with reality through a psychotic disorder, such as...
Medical Imaging Rates Continue to Rise Despite Push to Reduce Their Use
News | Radiology Imaging | September 03, 2019
Despite a broad campaign among physician groups to reduce the amount of medical imaging, use rates of various scans...
High-capacity MRI Scanner Approvals Boosting Innovations in MRI-safe Pulse Oximeters
News | Magnetic Resonance Imaging (MRI) | August 29, 2019
A notable increase in the prevalence of chronic diseases has led to a surge in sales of high-end diagnostic machines,...
Delaware Imaging Network Now Offers NeuroQuant Brain Imaging MRI Software
News | Neuro Imaging | August 29, 2019
Delaware Imaging Network (DIN), Delaware’s largest network of outpatient medical imaging centers, has added NeuroQuant...
Displacement comparison at the end-systolic frame and final frame

Displacement comparison at the end-systolic frame and final frame. The three patients (V6, V10, V16) with different left-ventricle walls are shown. Point-to-surface distance is a measure to estimate the distance of a point from the reference surface. Image courtesy of WMG, University of Warwick

News | Cardiac Imaging | August 28, 2019
A new 3-D magnetic resonance imaging (MRI) computing technique developed by scientists in WMG at the University of...
Smoldering Spots in the Brain May Signal Severe MS

NIH researchers found that dark rimmed spots representing ongoing, “smoldering” inflammation, may be a hallmark of more disabling forms of multiple sclerosis. Image courtesy of Reich lab, NIH/NINDS.

News | Neuro Imaging | August 22, 2019
Aided by a high-powered brain scanner and a 3-D printer, National Institutes of Health (NIH) researchers peered inside...
Vaping Impairs Vascular Function

Image courtesy of the American Heart Association

News | Magnetic Resonance Imaging (MRI) | August 21, 2019
Inhaling a vaporized liquid solution through an e-cigarette, otherwise known as vaping, immediately impacts vascular...