Feature | May 20, 2014

GE Healthcare Partners With Tesla Engineering to Produce Ultra High-Field 7T MRI Systems

GE Healthcare Partners With Tesla Engineering to Produce Ultra High-Field 7T MRI Systems

May 20, 2014 — GE Healthcare and Tesla Engineering Ltd. are collaborating to produce 7T human whole-body magnetic resonance imaging (MRI) scanners. The companies made the announcement at the joint meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) and the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) in Milan.

Ultra high-field MRI systems are used for scientific and medical research, primarily for morphological and functional imaging of the brain while steadily expanding to all anatomies. Researchers using ultra high-field scanners hope their work will contribute to earlier disease detection, more accurate diagnosis and increased effectiveness of investigational therapies for disorders and diseases such as cancer, stroke, epilepsy, drug abuse, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, attention deficit disorder, multiple sclerosis, head injury, visual disorders and schizophrenia.

Tesla Engineering Ltd. is currently building a new factory in Storrington, U.K., to manufacture the 7 Tesla magnets. They have recruited several key engineering and management staff with extensive experience in the design and manufacturing of ultra high-field magnets. The first unit from the new production line is committed to GE and scheduled to ship in late 2015.

“This agreement will enable GE to deepen and broaden our collaborations with leading MRI academics and visionaries, sharing our collective expertise and missions in technology, science and medicine,” said Richard Hausmann, president and CEO of GE Healthcare, MR. “The GE 7T community in the U.S., Europe and Asia has already demonstrated breakthrough observations and understanding of Alzheimer’s disease, traumatic brain injury and cognitive physiology. Together, we will continue to push the frontiers of MRI for neuroscience and other applications.”

“Tesla is very pleased to collaborate with GE and to take a leadership position in the continuing evolution of MR magnet technology,” said Mike Begg, group managing director, Tesla Engineering Ltd. “This is a solid business opportunity for us that complements and builds upon our existing strengths in superconducting magnet technology, as well as our strong core technology positions in cryogenics.”

For more information: www.gehealthcare.com, www.tesla.co.uk

Related Content

Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence. Graphic courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Artificial Intelligence | April 12, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Book Chapter Reports on Fonar Upright MRI for Hydrocephalus Imaging

Rotary misalignment of atlas (C1) and axis (C2). Image courtesy of Scott Rosa, DC, BCAO.

News | Magnetic Resonance Imaging (MRI) | March 20, 2019
Fonar Corp. reported publication of a chapter where the physician-author-researchers utilized the Fonar Upright Multi-...
Non-Contrast MRI Effective in Monitoring MS Patients
News | Neuro Imaging | March 18, 2019
Brain magnetic resonance imaging (MRI) without contrast agent is just as effective as the contrast-enhanced approach...
New MRI Sensor Can Image Activity Deep Within the Brain
News | Magnetic Resonance Imaging (MRI) | March 15, 2019
Calcium is a critical signaling molecule for most cells, and it is especially important in neurons. Imaging calcium in...