Feature | October 11, 2007 | Amy Ballard, MEd

Is Functional Diffusion Mapping Molecular Imaging’s Future?

Diffusion weighted MR may hold the key to effective treatment.

Cedara's I-Response features fDM, I-Response lesion and PET analysis tools for evaluation.

Cedara's I-Response features fDM, I-Response lesion and PET analysis tools for evaluation.

The ability to evaluate the efficacy of a given treatment for cancer is critical in achieving the best prognosis and care for patients. However, most standard methods of treatment response evaluation rely on visualizing a change in tumor size, which often occurs months after treatment begins. Determining the effectiveness of treatment earlier could enable physicians to adapt treatment, which could likely change prognosis and outcome. Research underway at the University of Michigan on functional Diffusion Mapping (fDM) may prove extremely effective in assessing treatment response early on.
Daniel A. Hamstra, M.D., Ph.D., clinical lecturer in radiation oncology and in the center for molecular imaging at the University of Michigan at Ann Arbor has worked with Al Rehemtulla, Ph.D., and Brian Ross, Ph.D., since 1994 in developing a new imaging technique called fDM used with magnetic resonance imaging (MR) to evaluate tumor response to treatment in the early stages. The concept behind fDM is that tumor cells slow the diffusion of water, and as more cells die, the speed of water diffusion increases. Specifically, this technique uses diffusion weighted MR images to look at the microscopic, cellular motion of water and then diffusion mapping compares those images spatially rather than taking an absolute value. By taking these measurements, which relate the death of tumor cells in response to treatment, physicians may be able to evaluate treatment in a matter of weeks as compared to months. Being able to assess changes earlier, it is hoped that treatment regimens will become more personalized and become better tailored to particular patient needs, thereby leading to improved patient care.
In 2004, the researchers at the University of Michigan investigated whether fDM could be used as a biomarker for early prediction of treatment response in brain cancer patients. “Essentially we and many other groups [of researchers] use diffusion MR to measure the mobility of water within tissues. Our group has been looking at changes in diffusion MR, which would correlate with response treatment. The functional diffusion map is one way to quantify those changes. Prior to this, people have looked at average values over the tumor. fDM looks at specific tumor areas and that’s the essential difference,” according to Dr. Hamstra.
In their research with brain tumor response, images were taken with both standard and diffusion MR before treatment and three weeks after treatment. These images were calculated and displayed as a “functional diffusion map,” which was able to predict patient response at three weeks from the start of treatment, demonstrating that early changes in tumor diffusion values could be used as a prognostic indicator of subsequent volumetric tumor response. Overall, fDM analysis provided an early biomarker for predicting treatment response in brain tumor patients.
Despite the groundbreaking discovery of fDM in brain tumor assessment, clinical data involving humans does not exist that demonstrates the effectiveness of fDM in assessing other types of cancer response to treatment, according to Dr. Hamstra. Until recently, research at the University of Michigan was limited to assessing brain cancer response. Now, their research has expanded to include primary breast cancer, primary head and neck cancer and metastatic prostate cancer in the bones. Research looking into the ability of fDM to assess bone cancer response is remarkable given that currently there are no ways to measure response in the bone. “We are only on the first or second patient in terms of looking at the bone. It is far too early to make claims about the bone,” said Dr. Hamstra. “We have promising data in the animal models for bone. That has suggested that diffusion MR may be useful [in humans].”
This unique method of analysis was licensed to Cedara Software (Cedara), a Merge Healthcare Company, developer of medical imaging software and custom-engineered solutions for the global OEM market. Cedara has commercialized the technology in its I-Response application. In July 2007, the application was released by Varian Medical Systems, who holds sole rights to distribute the tool to the radiation oncology and medical oncology community. The product has received FDA 510(k) approval, the Canadian Medical Device License and has received the European CE Mark as well.
“I-Response will prove to be an invaluable tool in both the medical oncologists and the radiation oncologists arsenal. It evolved, as most tools do, from the realm of academic research; however, in its current commercial form it is ready for use in both medical oncology and radiation oncology as one the first and most promising tools in the arena of tumor response assessment,” said Jon Hollon, product manager for I-Response at Varian Medical Systems.
In addition to fDM analysis, I-Response also includes lesion and PET analysis tools for evaluation. According to Chris Weidmann, product manager oncology for Cedara Software, “No cancer and no treatment have a silver bullet for assessment, and that’s why we look to provide more than one type of analysis so that clinicians can choose based on the patient and treatment.”
Not only does I-Response provide an invaluable tool for optimum patient care, the tool itself offers features, which improve workflow and increase efficiency by enabling clinicians to perform a variety of assessments with results automatically generated. Weidmann noted, “We provide viewing tools, the ability to register data at multiple time points, segmentation tools for contouring, and those are all auto-generated values. We generate all RECIST measurements, WHO measurements and the volume measurements automatically. We support all of that information into a back end data system. Part of the value of the tool is having all of those components in one system.” In addition, fDM can be easily integrated into existing workstations and is capable of being performed on any MR scanner without the use of a tracer, which could lead to faster and more widespread adoption.
Looking towards the future, fDM shows a lot of promise in terms of contributing to a more personalized and adaptive approach to cancer treatment, which could lead to a change in prognosis.
“The arena of early tumor response assessment is just beginning to evolve,” said Hollon. “Varian is excited to be able to offer one of the first and most versatile tools in this arena. We are confident that I-Response will be key in identifying early response trends and therefore will serve as an incredibly valuable tool
in aiding the physician in choosing the most effective form of treatment at the earliest possible stage of treatment.”

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init